Part A: Introduction to Credibility

LIMITED FLUCTUATION CREDIBILITY

Prediction

The updated prediction, U, is a weighted average of D (data) and M (manual rate):

$$
U=Z D+(1-Z) M
$$

where $Z, 0 \leq Z \leq 1$, is called the credibility factor.

STANDARDS FOR FULL-CREDIBILITY TO LIMIT THE FLUCTUATION AROUND

Define $\lambda_{F}=\left(\frac{z_{1-\alpha / 2}}{k}\right)^{2}$ and $C_{X}=\frac{\sigma_{X}}{\mu_{X}}$ the coefficient of variation of X.

$\underline{\text { Any frequency distribution }}$	
$n_{0}=\lambda_{F}\left(\frac{\sigma_{N}^{2}}{\mu_{N}}\right)$	$n_{0}=\lambda_{F}$
$n_{0}=\lambda_{F} C_{X}^{2}$	(same as any frequency)
$n_{0}=\lambda_{F}\left(\frac{\sigma_{N}^{2}}{\mu_{N}}+C_{X}^{2}\right)$	$n_{0}=\lambda_{F}\left(1+C_{X}^{2}\right)=\lambda_{F} \frac{\mathrm{E}\left(X^{2}\right)}{\mu_{X}^{2}}$

Claim Frequency
Claim Severity

Aggregate Losses and Pure Premium
$\underline{\text { Poisson frequency distribution }}$
$n_{0}=\lambda_{F}$
(same as any frequency)
$n_{0}=\lambda_{F}\left(1+C_{X}^{2}\right)=\lambda_{F} \frac{\mathrm{E}\left(X^{2}\right)}{\mu_{X}^{2}}$
$Z=1$ if the observed number of claims $>n_{0}$

PARTIAL CREDIBILITY FACTORS

| | Any frequency distribution
 Claim Frequency Z $=\sqrt{\frac{\mu_{N}}{\lambda_{F}\left(\frac{\sigma_{N}^{2}}{\mu_{N}}\right)}}$ | Poisson frequency distributio
 Claim Severity | $Z=\sqrt{\frac{N}{\lambda_{F} C_{X}^{2}}}$ |
| :--- | :--- | :--- | :--- |$\quad Z=\sqrt{\frac{\mu_{N}}{\lambda_{F}}}$

Within the square root, the denominator is the standard for full credibility of the corresponding risk measure.
The numerator, μ_{N} or N, is observed from data, where μ_{N} is the expected number of claims coming from the data, and N is the observed number of claims. If μ_{N} can not be calculated from the data, then the observed number of claims can be used to calculate the partial credibility factor.

Note: If the ratio is greater than 1 , then full credibility is attained and $Z=1$.

C_{X}^{2} AND $\left(1+C_{X}^{2}\right)$ FOR SOME COMMONLY USED SEVERITY DISTRIBUTIONS

\underline{X}
(Two-parameter) Pareto (α, θ)
Single-parameter Pareto (α, θ)
Gamma (α, θ)
Exponential (θ)
Inverse Gamma (α, θ)
Inverse Gaussian (μ, θ)
Lognormal (μ, σ)
Uniform in $(0, \theta)$
Note: The standard for full-credibility for claim severity is $n_{0}=\lambda_{F} C_{X}^{2}$, and the standard for full-credibility for aggregate losses and pure premium is $n_{0}=\lambda_{F}\left(1+C_{X}^{2}\right)$ for a Poisson frequency distribution.

BÜHLMANN CREDIBILITY

Hypothetical mean

Process variance
Expected value of the hypothetical means
(unconditional mean)
Expected value of the process variance (EPV)
Variance of the hypothetical means (VHM)
Total variance of X (unconditional variance)
Bühlmann's k

Credibility factor

Bühlmann premium
$\mu_{X}(\Theta)=\mathrm{E}(X \mid \Theta)$
$\sigma_{x}^{2}(\Theta)=\operatorname{Var}(X \mid \Theta)$
$\mu_{X}=\mathrm{E}(X)=\mathrm{E}[\mathrm{E}(X \mid \Theta)]=\mathrm{E}\left[\mu_{X}(\Theta)\right]$
$\mu_{\mathrm{PV}}=\mathrm{E}[\operatorname{Var}(X \mid \Theta)]=\mathrm{E}\left[\sigma_{x}^{2}(\Theta)\right]$
$\sigma_{\mathrm{HM}}^{2}=\operatorname{Var}[\mathrm{E}(X \mid \Theta)]=\operatorname{Var}\left[\mu_{X}(\Theta)\right]$
$\operatorname{Var}(X)=\mathrm{E}[\operatorname{Var}(X \mid \Theta)]+\operatorname{Var}[\mathrm{E}(X \mid \Theta)]=\mu_{\mathrm{PV}}+\sigma_{\mathrm{HM}}^{2}$
$k=\frac{\mathrm{EPV}}{\mathrm{VHM}}=\frac{\mu_{\mathrm{PV}}}{\sigma_{\mathrm{HM}}^{2}}$
$Z=\frac{n}{n+k}$ where n represents the number of observations
$\hat{X}_{n+1}=Z \bar{X}+(1-Z) \mu_{X}$

Note: X is a risk measure which may be claim frequency, claim severity, aggregate loss, or pure premium. Assume that $\left\{X_{1}, \cdots, X_{n}, X_{n+1}\right\}$ are iid given the parameter $\theta . \bar{X}=\sum_{i=1}^{n} X_{i} / n$ is the sample mean, and $\mu_{X}=\mathrm{E}(X)$ is the unconditional mean.

BÜHLMANN-STRAUB CREDIBILITY

Hypothetical mean
Process variance of $X_{i j}$
Expected value of the hypothetical means
Expected value of the process variance (EPV)
Variance of the hypothetical mean (VHM)
Total variance of X

Bühlmann's k

Credibility factor

Bühlmann premium
$\mathrm{E}\left(X_{i j} \mid \Theta\right)=\mu_{X}(\Theta)$
$\operatorname{Var}\left(X_{i j} \mid \Theta\right)=\sigma_{X}^{2}(\Theta)$
$\mu_{X}=\mathrm{E}(X)=\mathrm{E}[\mathrm{E}(X \mid \Theta)]=\mathrm{E}\left[\mu_{X}(\Theta)\right]$
$\mu_{\mathrm{PV}}=\mathrm{E}\left[\operatorname{Var}\left(X_{i j} \mid \Theta\right)\right]=\mathrm{E}\left[\sigma_{x}^{2}(\Theta)\right]$
$\sigma_{\mathrm{HM}}^{2}=\operatorname{Var}\left[\mathrm{E}\left(X_{i j} \mid \Theta\right)\right]=\operatorname{Var}\left[\mu_{X}(\Theta)\right]$
$\operatorname{Var}(X)=\mathrm{E}[\operatorname{Var}(X \mid \Theta)]+\operatorname{Var}[\mathrm{E}(X \mid \Theta)]=\mu_{\mathrm{PV}}+\sigma_{\mathrm{HM}}^{2}$
$k=\frac{\mathrm{EPV}}{\mathrm{VHM}}=\frac{\mu_{\mathrm{PV}}}{\sigma_{\mathrm{HM}}^{2}}$
$Z=\frac{m}{m+k}$ where m represents the number of exposures
$\hat{X}_{n+1}=Z \bar{X}+(1-Z) \mu_{x}$

Note: Denote $X_{i j}$ the loss measure of the j th insured in the i th year, $X_{i}=\frac{\sum_{j=1}^{m_{i}} X_{i j}}{m_{i}}, \bar{X}=\frac{1}{m} \sum_{i=1}^{n} X_{i}$ (sample mean) and $m=\sum_{i=1}^{n} m_{i}, j=1, \cdots, m_{i}, i=1, \cdots, n$.

BÜHLMANN PREDICTION FOR CONJUGATE PRIORS

Prior distribution	Conditional dist.	$\mu_{\mathrm{PV}}(\mathrm{EPV})$	$\sigma_{\mathrm{HM}}^{2}(\mathrm{VHM})$	$k=\frac{\mu_{\mathrm{PV}}}{\sigma_{\mathrm{HM}}^{2}}$
Gamma (α, θ)	Poisson (Λ)	$a \theta$	$a \theta^{2}$	$1 / \theta$
Beta (a, b)	geometric $(\Theta)^{*}$	$\frac{b(a+b-1)}{(a-1)(a-2)}$	$\frac{b(a+b-1)}{(a-1)^{2}(a-2)}$	$a-1$
Beta (a, b)	Bernoulli (Q)	$\frac{a b}{(a+b)(a+b+1)}$	$\frac{a b}{(a+b)^{2}(a+b+1)}$	$a+b$
Gamma (α, θ)	exponential $(\Lambda)^{* *}$	$\frac{\theta^{2}}{(\alpha-1)(\alpha-2)}$	$\frac{\theta^{2}}{(\alpha-1)^{2}(\alpha-2)}$	$\alpha-1$
Inverse gamma (α, θ)	exponential (Λ)	$\frac{\theta^{2}}{(\alpha-1)(\alpha-2)}$	$\frac{\theta^{2}}{(\alpha-1)^{2}(\alpha-2)}$	$\alpha-1$
Normal (μ, a)	normal (Θ, v)	v	a	v / a

$\left.{ }^{*}\right)$ The pmf in MAS-II Tables, $p_{k}=\beta^{k} /(1+\beta)^{k+1}$, is parameterized by $p_{k}=\theta(1-\theta)^{k}$ where $\theta=1 /(1+\beta)$.
${ }^{(* *)}$ The pdf in MAS-II Tables, $f(x)=(1 / \theta) \exp (-x / \theta)$, is parameterized by $f(x)=\lambda \exp (-x \lambda)$ where $\lambda=1 / \theta$.

BAYESIAN INFERENCE AND ESTIMATION

Prior probability density function (pdf)
Conditional pdf of X_{i}, given parameter $\Theta=\theta$

$$
f_{\Theta}(\theta)
$$

$$
f_{X_{i} \mid \Theta}\left(x_{i} \mid \theta\right)
$$

Likelihood function of $\boldsymbol{x}=\left\{x_{1}, \cdots, x_{n}\right\}$

Joint pdf of \boldsymbol{X} and Θ

Marginal pdf of \boldsymbol{X}

Posterior pdf

Predictive pdf of X_{n+1} given \boldsymbol{x}

Bayesian premium
$f_{\boldsymbol{X} \mid \Theta}(\boldsymbol{x} \mid \theta)=\prod_{i=1}^{n} f_{X \mid \Theta}\left(x_{i} \mid \theta\right)$
$f_{\Theta \boldsymbol{X}}(\theta, \boldsymbol{x})=f_{\boldsymbol{X} \mid \Theta}(\boldsymbol{x} \mid \theta) \times f_{\Theta}(\theta)$
$f_{\mathbf{X}}(\boldsymbol{x})=\int_{\Theta} f_{\Theta \boldsymbol{X}}(\theta, \boldsymbol{x}) \mathrm{d} \theta=\mathrm{E}_{\Theta}\left[f_{\boldsymbol{X} \mid \Theta}(\boldsymbol{x} \mid \theta)\right]$
$f_{\Theta \mid \boldsymbol{X}}(\theta \mid \boldsymbol{x})=\frac{f_{\Theta \boldsymbol{X}}(\theta, \boldsymbol{x})}{f_{\mathrm{X}}(\boldsymbol{x})}$
$f_{X_{n+1} \mid \boldsymbol{X}}\left(x_{n+1} \mid \boldsymbol{x}\right)=\mathrm{E}_{\Theta \mid \boldsymbol{x}}\left[f_{X_{i} \mid \Theta}\left(x_{i} \mid \theta\right)\right]$
$\hat{\mu}_{X}(\boldsymbol{x})=\mathrm{E}\left(X_{n+1} \mid \boldsymbol{x}\right)=\mathrm{E}_{\Theta \mid \boldsymbol{X}}\left[\mathrm{E}\left(X_{n+1} \mid \Theta\right) \mid \boldsymbol{x}\right]$

CONJUGATE DISTRIBUTION

Pair (Prior - Conditional)

Gamma (α, θ) - Poisson (Λ)

Beta (a, b) - geometric $(\Theta)^{(3)}$

Beta (a, b) - Bernoulli (Q)

Beta (a, b) - binomial (l, Q)

Gamma (α, θ) - exponential $(\Lambda)^{(4)}$

Inverse gamma (α, θ) - exponential (Λ)
$\operatorname{Normal}(\mu, a)-\operatorname{normal}(\Theta, v)$

Posterior dist. ${ }^{(1)}$	$\underline{\text { Bayesian prem. } \hat{\mu}_{X}(\boldsymbol{x})}$	$\underline{\text { Predictive dist. }}{ }^{(2)}$
$\begin{aligned} & \alpha_{*}=\alpha+\sum x_{i} \\ & \theta_{*}=\left(\theta^{-1}+n\right)^{-1} \end{aligned}$	$\alpha_{*} \theta_{*}$	$\mathrm{NB}\left(\theta_{*}, \alpha_{*}\right)$
$\begin{aligned} & a_{*}=a+n \\ & b_{*}=b+\sum x_{i} \end{aligned}$	$\frac{b_{*}}{a_{*}-1}$	
$\begin{aligned} & a_{*}=a+\sum x_{i} \\ & b_{*}=b+n-\sum x_{i} \end{aligned}$	$\frac{a_{*}}{a_{*}+b_{*}}$	
$\begin{aligned} & a_{*}=a+\sum x_{i} \\ & b_{*}=b+\ln -\sum x_{i} \end{aligned}$	(l) $\frac{a_{*}}{a_{*}+b_{*}}$	
$\begin{aligned} & \alpha_{*}=\alpha+n \\ & \theta_{*}=\theta+\sum x_{i} \end{aligned}$	$\frac{\theta_{*}}{\alpha_{*}-1}$	Pareto $\left(\alpha_{*}, \theta_{*}\right)$
$\begin{aligned} & \alpha_{*}=\alpha+n \\ & \theta_{*}=\theta+\sum x_{i} \end{aligned}$	$\frac{\theta_{*}}{\alpha_{*}-1}$	Pareto $\left(\alpha_{*}, \theta_{*}\right)$
$\begin{aligned} \mu_{*} & =\frac{n \bar{x}+(v / a) \mu}{n+v / a} \\ a_{*} & =\frac{v}{n+v / a} \end{aligned}$	μ_{*}	$\operatorname{Normal}\left(\mu_{*}, a_{*}+v\right)$

(1) In each conjugate pair, the posterior distribution belongs to the same class as the prior distribution where "*" indicates the updated parameters.

In Bühlmann-Straub model, replace " n " with " m " and " $\sum x_{i}$ " with " $\sum \sum x_{i j}$ ".
(2) The Bayesian premium is the expected value of the predictive distribution.
(3) The pmf in MAS-II Tables, $p_{k}=\beta^{k} /(1+\beta)^{k+1}$, is parameterized by $p_{k}=\theta(1-\theta)^{k}$ where $\theta=1 /(1+\beta)$.
(4) The pdf in MAS-II Tables, $f(x)=(1 / \theta) \exp (-x / \theta)$, is parameterized by $f(x)=\lambda \exp (-x \lambda)$ where $\lambda=1 / \theta$.

DISCRETE PRIOR DISTRIBUTION

Prior probability mass function (pmf)

Likelihood function of \boldsymbol{x} given $\Theta=\theta_{j}$

Joint distribution of X and Θ

Marginal distribution of $\boldsymbol{X}=\boldsymbol{x}$

Posterior pmf of $\Theta=\theta_{j}$ given \boldsymbol{x}

Predictive of X_{n+1} given \boldsymbol{x}

Bayesian premium

$$
\operatorname{Pr}\left(\Theta=\theta_{j}\right)=\pi_{j}
$$

$$
f\left(\boldsymbol{x} \mid \theta_{j}\right)=\prod_{i=1}^{n} f\left(x_{i} \mid \theta_{j}\right)
$$

$$
f\left(\theta_{j}, \boldsymbol{x}\right)=f\left(\boldsymbol{x} \mid \theta_{j}\right) \pi_{j}
$$

$$
f(\boldsymbol{x})=\sum_{j=1}^{J} f\left(\boldsymbol{x}, \theta_{j}\right)=\sum_{j=1}^{J} f\left(\boldsymbol{x} \mid \theta_{j}\right) \pi_{j}
$$

$$
f\left(\theta_{j} \mid \boldsymbol{x}\right)=\frac{f\left(\boldsymbol{x}, \theta_{j}\right)}{f(\boldsymbol{x})}=\frac{f\left(\boldsymbol{x} \mid \theta_{j}\right) \pi_{j}}{\sum_{k=1}^{J} f\left(\boldsymbol{x} \mid \theta_{k}\right) \pi_{k}}=\pi_{j}^{*}
$$

$$
f_{X_{n+1} \mid \boldsymbol{X}}\left(x_{n+1} \mid \boldsymbol{x}\right)=\mathrm{E}_{\Theta \mid \boldsymbol{x}}\left[f_{X_{i} \mid \Theta}\left(x_{i} \mid \theta\right)\right]
$$

$$
\hat{\mu}_{X}(\boldsymbol{x})=\mathrm{E}\left(X_{n+1} \mid \boldsymbol{x}\right)=\sum_{j=1}^{J} \mathrm{E}\left(X_{n+1} \mid \theta_{j}\right) \pi_{j}^{*}
$$

NON-PARAMETRIC MODEL IN BÜHLMANN-STRAUB'S CASE

Sample mean of the i th risk group

$$
\begin{aligned}
& \bar{X}_{i}=\frac{1}{m_{i}} \sum_{j=1}^{n_{i}} m_{i j} X_{i j} \\
& s_{i}^{2}=\frac{1}{n_{i}-1} \sum_{j=1}^{n_{i}} m_{i j}\left(X_{i j}-\bar{X}_{i}\right)^{2} \\
& \hat{\mu}_{\mathrm{PV}}=\frac{\sum_{i=1}^{r}\left(n_{i}-1\right) s_{i}^{2}}{\sum_{i=1}^{r}\left(n_{i}-1\right)} \\
& \hat{\mu}_{X}=\bar{X}=\frac{1}{m} \sum_{i=1}^{r} m_{i} \bar{X}_{i} \\
& \hat{\sigma}_{\mathrm{HM}}^{2}=\frac{\sum_{i=1}^{r} m_{i}\left(\bar{X}_{i}-\bar{X}\right)^{2}-(r-1) \hat{\mu}_{\mathrm{PV}}}{m-\left(\sum_{i=1}^{r} m_{i}^{2}\right) / m}
\end{aligned}
$$

Credibility premium for the i th risk group for balancing the total loss with the predicted loss
Credibility premium of the i th risk group
Unbiased estimator of $\sigma_{\mathbf{H M}}^{2}$

$$
\hat{Z}_{i} \bar{X}_{i}+\left(1-\hat{Z}_{i}\right) \bar{X} \text { where } \hat{Z}_{i}=\frac{m_{i}}{m_{i}+\hat{\mu}_{\mathrm{PV}} / \hat{\sigma}_{\mathrm{HM}}^{2}}
$$

$$
\hat{Z}_{i} \bar{X}_{i}+\left(1-\hat{Z}_{i}\right) \hat{\mu}_{X} \text { where } \hat{\mu}_{X}=\frac{\sum_{i=1}^{r} \hat{Z}_{i} \bar{X}_{i}}{\sum_{i=1}^{r} \hat{Z}_{i}}
$$

$X_{i j}$: The observation per unit of exposure during the j th time period for risk i
$m_{i j}$: The number of exposures during the j th time period for risk i
m_{i} : The total number of exposures in the experience for risk i
n_{i} : The number of experience periods for risk i

$$
\begin{aligned}
m & =\sum_{i=1}^{r} m_{i} \\
n & =\sum_{i=1}^{r} n_{i}
\end{aligned}
$$

$\hat{\sigma}_{\mathrm{HM}}^{2}$ may be negative in empirical applications. In this case, it maybe be set to zero, which implies that \hat{Z}_{i} will be zero for all risk groups.

NON-PARAMETRIC MODEL IN BÜHLMANN'S CASE

Sample mean of the i th risk group

Sample process variance of the i th risk group

Unbiased estimate of μ_{PV}

Overall sample mean

Unbiased estimator of $\sigma_{\mathbf{H M}}^{2}$

Credibility premium of the i th risk group

Credibility premium for the i th risk group for
balancing the total loss with the predicted loss
Credibility premium for the i th risk group for
balancing the total loss with the predicted loss

$$
\begin{aligned}
& \bar{X}_{i}=\frac{1}{n_{i}} \sum_{j=1}^{n_{i}} X_{i j} \\
& s_{i}^{2}=\frac{\sum_{j=1}^{n_{i}}\left(X_{i j}-\bar{X}_{i}\right)^{2}}{n_{i}-1} \\
& \tilde{\mu}_{\mathrm{PV}}=\frac{\sum_{i=1}^{r}\left(n_{i}-1\right) s_{i}^{2}}{\sum_{i=1}^{r}\left(n_{i}-1\right)} \\
& \bar{X}=\frac{1}{n} \sum_{i=1}^{r} \sum_{j=1}^{n_{i}} X_{i j} \\
& \tilde{\sigma}_{\mathrm{HM}}^{2}=\frac{\sum_{i=1}^{r} n_{i}\left(\bar{X}_{i}-\bar{X}\right)^{2}-(r-1) \tilde{\mu}_{\mathrm{PV}}}{n-\left(\sum_{i=1}^{r} n_{i}^{2}\right) / n}
\end{aligned}
$$

$$
\tilde{Z}_{i} \bar{X}_{i}+\left(1-\tilde{Z}_{i}\right) \bar{X} \text { where } \tilde{Z}_{i}=\frac{n_{i}}{n_{i}+\tilde{\mu}_{\mathrm{PV}} / \tilde{\sigma}_{\mathrm{HM}}^{2}}
$$

$$
\hat{Z}_{i} \bar{X}_{i}+\left(1-\hat{Z}_{i}\right) \hat{\mu}_{X} \text { where } \hat{\mu}_{X}=\frac{\sum_{i=1}^{r} \hat{Z}_{i} \bar{X}_{i}}{\sum_{i=1}^{r} \hat{Z}_{i}}
$$

Note: The Bühlmann-Straub model reduces to Bühlmann model when $m_{i j}=1$ for all i and j. In this case, we have $\sum_{j=1}^{n_{i}} m_{i j}=m_{i}=n_{i}$ and $n=\sum_{i=1}^{r} n_{i}$.
$\tilde{\sigma}_{\text {HM }}^{2}$ may be negative in empirical applications. In this case, it maybe be set to zero, which implies that \tilde{Z}_{i} will be zero for all risk groups.

NON-PARAMETRIC MODEL IN BÜHLMANN'S CASE (SAME SAMPLE SIZE IN ALL RISK GROUPS)

Sample mean of the i th risk group

Sample process variance of the i th risk group

Unbiased estimate of μ_{PV}
Overall sample mean

Unbiased estimator of $\sigma_{\mathbf{H M}}^{2}$
Credibility premium of the i th risk group

$$
\begin{aligned}
& \bar{X}_{i}=\frac{1}{n_{*}} \sum_{j=1}^{n_{*}} X_{i j} \\
& s_{i}^{2}=\frac{\sum_{j=1}^{n_{*}}\left(X_{i j}-\bar{X}_{i}\right)^{2}}{n_{*}-1} \\
& \tilde{\mu}_{\mathrm{PV}}=\frac{\sum_{i=1}^{r} s_{i}^{2}}{r} \\
& \bar{X}=\frac{1}{n} \sum_{i=1}^{r} \sum_{j=1}^{n_{*}} X_{i j} \\
& \tilde{\sigma}_{\mathrm{HM}}^{2}=\frac{\sum_{i=1}^{r}\left(\bar{X}_{i}-\bar{X}\right)^{2}}{r-1}-\frac{\tilde{\mu}_{\mathrm{PV}}}{n_{*}}
\end{aligned}
$$

$$
\tilde{Z}_{i} \bar{X}_{i}+\left(1-\tilde{Z}_{i}\right) \bar{X} \text { where } \tilde{Z}_{i}=\frac{n_{*}}{n_{*}+\tilde{\mu}_{\mathrm{PV}} / \tilde{\sigma}_{\mathrm{HM}}^{2}}
$$

Note: $n_{i}=n_{*}$ and $n=r n_{*}$

Part B: Linear Mixed Models

OVERVIEW

General linear mixed model (two-level)
$Y_{t i}=\underbrace{\beta_{1} X_{t i}^{(1)}+\beta_{2} X_{t i}^{(2)}+\beta_{3} X_{t i}^{(3)}+\cdots+\beta_{p} X_{t i}^{(p)}}_{\text {fixed }}+\underbrace{u_{1 i} Z_{t i}^{(1)}+\cdots+u_{q i} Z_{t i}^{(q)}}_{\text {random }}+\epsilon_{t i}$
$t, t=1, \cdots, n_{i}$: Time indexes for the n_{i} longitudinal observations of the dependent variable for a given subject.
$i, i=1, \cdots, m$: The i-th subject.
X : The fixed factors or fixed covariates, i.e., factors that represent conditions chosen specifically to meet the objectives of the study.
Z : The random factors or random covariates, i.e., the factors that may have an affect on the study but are not the explicit factors being studied.

Depending on the purpose of the study, a variable could be either fixed or random.
β : Coefficients on the fixed factors, i.e., the fixed effects.
u : Coefficients on the random factors, i.e., the random effects.
$\epsilon_{t i}$: The residual for the t-th occasion of the i-th subject.

General Matrix Specification

$$
Y_{i}=\underbrace{X_{i} \boldsymbol{\beta}}_{\text {fixed }}+\underbrace{Z_{i} u_{i}}_{\text {random }}+\epsilon_{i}, \quad u_{i} \sim N(0, D) \quad \epsilon_{i} \sim N\left(0, R_{i}\right)
$$

where
$Y_{i}=\left[\begin{array}{c}Y_{1 i} \\ Y_{2 i} \\ \vdots \\ Y_{n_{i} i}\end{array}\right], \quad X_{i}=\left[\begin{array}{cccc}X_{1 i}^{(1)} & X_{1 i}^{(2)} & \cdots & X_{1 i}^{(p)} \\ X_{2 i}^{(1)} & X_{2 i}^{(2)} & \cdots & X_{2 i}^{(p)} \\ \vdots & \vdots & \ddots & \vdots \\ X_{n_{i} i}^{(1)} & X_{n_{i} i}^{(2)} & \cdots & X_{n_{i} i}^{(p)}\end{array}\right], \quad \boldsymbol{\beta}=\left[\begin{array}{c} \\ \beta_{1} \\ \beta_{2} \\ \vdots \\ \\ \beta_{p}\end{array}\right]$,
$Z_{i}=\left[\begin{array}{cccc}Z_{1 i}^{(1)} & Z_{1 i}^{(2)} & \cdots & Z_{1 i}^{(q)} \\ Z_{2 i}^{(1)} & Z_{2 i}^{(2)} & \cdots & Z_{2 i}^{(q)} \\ \vdots & \vdots & \ddots & \vdots \\ Z_{n_{i} i}^{(1)} & Z_{n_{i} i}^{(2)} & \cdots & Z_{n_{i} i}^{(q)}\end{array}\right], \quad u_{i}=\left[\begin{array}{c} \\ u_{1 i} \\ u_{2 i} \\ \vdots \\ \\ u_{q i}\end{array}\right], \quad \epsilon_{i}=\left[\begin{array}{c}\epsilon_{1 i} \\ \epsilon_{2 i} \\ \vdots \\ \\ \epsilon_{n_{i} i}\end{array}\right]$
Y_{i} : The response variable vector with n_{i} rows, one for each observation for subject i. X_{i} : An $n_{i} \times p$ matrix with a row for every observation and a column for every fixed factor.

Variance-covariance matrix

Common Covariance

Structures for Residuals

Z_{i} : An $n_{i} \times q$ matrix with a row for every observation and a column for every random factor.
$\boldsymbol{\beta}$: The fixed effect vector with p rows (one for every fixed factor).
u_{i} : The random effect vector with q rows (one for every random factor).
ϵ_{i} : The vector of residuals with n_{i} rows, one for each observation for subject i.

The variance-covariance matrix for the random effects in u_{i} : D, also denoted as $\operatorname{Var}\left(u_{i}\right)$. The main diagonal of D (the diagonal from the upper left corner to the lower right) represent the variances of each random effect. The off-diagonal entries are the random effect covariances, where the row and column determine which random effects.

The variance-covariance matrix for the residuals for subject $i: R_{i}=\operatorname{Var}\left(\epsilon_{i}\right)$. The size of the matrix would be $n_{i} \times n_{i}$, because each observation would have its own residual.

The unique elements of the D and R matrices can be expressed in vectors θ_{D} and θ_{R}, respectively.

Diagonal structure:

$$
R_{i}=\operatorname{Var}\left(\epsilon_{i}\right)=\sigma^{2} \boldsymbol{I}_{n_{i}}=\left[\begin{array}{cccc}
\sigma^{2} & 0 & \cdots & 0 \\
0 & \sigma^{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \sigma^{2}
\end{array}\right]
$$

Parameter: $\theta_{R}=\left(\sigma^{2}\right)$

Compound symmetry structure:

$$
R_{i}=\operatorname{Var}\left(\epsilon_{i}\right)=\left[\begin{array}{cccc}
\sigma^{2}+\sigma_{1} & \sigma_{1} & \cdots & \sigma_{1} \\
\sigma_{1} & \sigma^{2}+\sigma_{1} & \cdots & \sigma_{1} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{1} & \sigma_{1} & \cdots & \sigma^{2}+\sigma_{1}
\end{array}\right]
$$

Parameters: $\theta_{R}=\left(\sigma^{2}, \sigma_{1}\right)$

AR(1) structure:

$$
R_{i}=\operatorname{AR}(1)=\operatorname{Var}\left(\epsilon_{i}\right)=\left[\begin{array}{cccc}
\sigma^{2} & \sigma^{2} \rho & \cdots & \sigma^{2} \rho^{n_{i}-1} \\
\sigma^{2} \rho & \sigma^{2} & \cdots & \sigma^{2} \rho^{n_{i}-2} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma^{2} \rho^{n_{i}-1} & \sigma^{2} \rho^{n_{i}-2} & \cdots & \sigma^{2}
\end{array}\right]
$$

Parameters: $\theta_{R}=\left(\sigma^{2}, \rho\right)$

Specification of the Marginal Model
$Y_{i}=X_{i} \boldsymbol{\beta}+\epsilon_{i}^{*}$,
$\epsilon_{i}^{*} \sim N\left(0, V_{i}^{*}\right)$
$Y_{i}=X_{i} \beta+Z_{i} u_{i}+\epsilon_{i}$, where $u_{i} \sim N(0, D)$ and $\epsilon_{i} \sim N\left(0, R_{i}\right)$ can be reformulated as:

$$
\begin{aligned}
Y_{i} & =X_{i} \boldsymbol{\beta}+\epsilon_{i}^{*} \\
\epsilon_{i}^{*} & \sim N\left(0, V_{i}\right) \\
V_{i} & =Z_{i} D Z_{i}^{\prime}+R_{i}
\end{aligned}
$$

The covariance parameters θ or θ_{V} are the same as the parameters for θ_{D} and θ_{R}. For example, if θ_{D} followed the diagonal structure with parameter σ_{D}^{2}, and θ_{R} followed the compound symmetry structure with parameters σ_{R}^{2} and σ_{1}, then $\theta_{V}=\left(\sigma_{D}^{2}, \sigma_{R}^{2}, \sigma_{1}\right)$.

Maximum Likelihood (ML) Model for subject i :

Estimation

$$
\begin{aligned}
Y_{i} & =X_{i} \boldsymbol{\beta}+\epsilon_{i}^{*}, \\
\epsilon_{i}^{*} & \sim N\left(0, V_{i}\right), \\
V_{i} & =\boldsymbol{Z}_{i} \boldsymbol{D} \boldsymbol{Z}_{i}^{\prime}+\boldsymbol{R}_{i}
\end{aligned}
$$

The joint log-likelihood function of $\left(y_{1}, \cdots, y_{m}\right)$:

$$
\begin{aligned}
l(\boldsymbol{\beta}, \theta)= & -(n / 2) \log (2 \pi)-(1 / 2) \sum \log \left(\operatorname{det}\left(V_{i}\right)\right) \\
& -(1 / 2) \sum\left(y_{i}-X_{i} \boldsymbol{\beta}\right)^{\prime}\left(V_{i}\right)^{-1}\left(y_{i}-X_{i} \boldsymbol{\beta}\right), \quad n=\sum_{1}^{m} n_{i}
\end{aligned}
$$

The maximum likelihood estimates (MLEs) of the parameters are the values of the arguments that maximize the likelihood function. The ML estimation is a two-step procedure.

- The first step is to estimate the fixed-effect parameters $\boldsymbol{\beta}$ using the generalized least squares (GLS) assuming the covariance parameters $\boldsymbol{\theta}$ are known.

Restricted Maximum

Likelihood (REML)

Estimation

Best Linear Unbiased Estimator (BLUE)

Likelihood Ratio Tests (LRT)

- The second step is to obtain the estimates of $\boldsymbol{\theta}$ by optimizing the profile loglikelihood function. After obtaining the estimates of $\boldsymbol{\theta}$, we can then calculate the estimates of $\boldsymbol{\beta}$.

The estimator of $\boldsymbol{\beta}$ has the desirable statistical property of being the best linear unbiased estimator (EBLUE) of $\boldsymbol{\beta}$.

REML estimation maximizes the REML log-likelihood function:

$$
\begin{aligned}
l_{R E M L}(\boldsymbol{\beta}, \theta)= & -\left(\frac{n-p}{2}\right) \log (2 \pi)-(1 / 2) \sum \log \left(\operatorname{det}\left(V_{i}\right)\right) \\
& -(1 / 2) \sum\left(y_{i}-X_{i} \boldsymbol{\beta}\right)^{\prime}\left(V_{i}\right)^{-1}\left(y_{i}-X_{i} \boldsymbol{\beta}\right) \\
& -(1 / 2) \sum \log \left(\operatorname{det}\left(X_{i}^{\prime} V_{i}^{-1} X_{i}\right)\right), \quad n=\sum_{1}^{m} n_{i}
\end{aligned}
$$

The REML estimates of the covariance parameters $(\boldsymbol{\theta})$ are unbiased, whereas the ML estimates are biased. Both the ML and the REML estimates of the diagonal elements of $\operatorname{var}(\beta)$ are downward biased.

If θ is known, the BLUE of $\boldsymbol{\beta}$ is:

$$
\hat{\boldsymbol{\beta}}=\left(\sum_{i} \boldsymbol{X}_{i}^{\prime} \boldsymbol{V}_{i}^{-1} \boldsymbol{X}_{i}\right)^{-1} \sum_{i} \boldsymbol{X}_{i}^{\prime} \boldsymbol{V}_{i}^{-1} \boldsymbol{y}_{i}
$$

If θ is unknown, estimate θ and then calculate $\hat{\boldsymbol{D}}, \hat{\boldsymbol{R}}_{i}, \hat{V}_{i}=\boldsymbol{Z}_{i} \hat{\boldsymbol{D}} \boldsymbol{Z}_{i}^{\prime}+\hat{\boldsymbol{R}}_{i}$, and:

$$
\hat{\boldsymbol{\beta}}=\left(\sum_{i} \boldsymbol{X}_{i}^{\prime} \hat{\boldsymbol{V}}_{i}^{-1} \boldsymbol{X}_{i}\right)^{-1} \sum_{i} \boldsymbol{X}_{i}^{\prime} \hat{\boldsymbol{V}}_{i}^{-1} \boldsymbol{y}_{i}
$$

Denote $L_{\text {nested }}$ the value of the likelihood function evaluated at the ML or REML estimates of the parameters in the nested model M_{0} (null hypothesis) and $L_{\text {reference }}$ the value in the reference model M_{A} (alternative hypothesis). The likelihood ratio test (LRT) statistics, or simply the likelihood ratio, is defined as:

$$
T=-2 \ln \left(\frac{L_{\text {nested }}}{L_{\text {reference }}}\right)
$$

T asymptotically follows a χ^{2} distribution with degrees of freedom equal to the number of parameters in M_{A} subtracted by the number of parameters in M_{0}.

When the LRT is performed on covariance parameters, with the null hypothesis lying on the boundary of the parameter space, the test statistics has an asymptotic null distribution that is a mixture of two χ^{2} distributions.
t-test for testing
single fixed-effect parameter

When testing a single fixed-effect parameter:

$$
\begin{array}{ll}
H_{0}: & \beta=0 \\
H_{\mathrm{A}}: & \beta=0
\end{array}
$$

(nested model)
(reference model)
The t-statistic is $T=\hat{\beta} / \operatorname{se}(\hat{\beta})$.
T does not follow an exact t distribution in the context of an LMM. Instead, we use the standard normal distribution when the sample is large, which gives us a z-statistic $z=\hat{\beta} / \operatorname{se}(\hat{\beta})$ and p value p-value $=(2) \operatorname{Pr}(Z>|z|)$.

The hypothesis:

$$
\begin{equation*}
H_{0}: L \boldsymbol{\beta}=\mathbf{0} \tag{nestedmodel}
\end{equation*}
$$

$$
H_{\mathrm{A}}: L \boldsymbol{\beta} \neq \mathbf{0}
$$

(reference model)
where $\boldsymbol{\beta}$ is a vector of p unknown fixed-effect parameters and L is a known matrix.
The test statistic is $W=\hat{\boldsymbol{\beta}}^{\prime} \boldsymbol{L}^{\prime}\left(\boldsymbol{L}\left(\sum_{i} \boldsymbol{X}_{i}^{\prime} \boldsymbol{V}_{i}^{-1} \boldsymbol{X}_{i}\right)^{-1} \boldsymbol{L}^{\prime}\right)^{-1} \boldsymbol{L} \hat{\boldsymbol{\beta}}$, which asymptotically follows a χ^{2} with degrees of freedom equal to the rank of the L matrix.

The null hypothesis:

$$
\begin{array}{lr}
H_{0}: \boldsymbol{\beta}=\mathbf{0} \\
H_{\mathrm{A}}: \boldsymbol{\beta} \neq \mathbf{0} & \text { (reference model) }
\end{array}
$$

The F-statistic is: $F=\frac{W}{\operatorname{rank}(\boldsymbol{L})}$, which follows an approximate F distribution, with numerate degrees of freedom equal to the rank of \mathbf{L}, and an approximated denominator degrees of freedom equal to $n-p$ where n is the sample size and p is the total number of fixed-effect parameter estimated.

The empirical BLUPs (EBLUPs) of u_{i} is:

$$
\hat{u}_{i}=\mathrm{E}\left(u_{i} \mid Y_{i}=y_{i}\right)=\hat{D} Z_{i}^{\prime} \hat{V}_{i}^{-1}\left(y_{i}-X_{i} \hat{\boldsymbol{\beta}}\right)
$$

where:

$$
\begin{aligned}
Y_{i} & =X_{i} \beta+Z_{i} \boldsymbol{u}_{i}+\epsilon_{i} \\
\boldsymbol{u}_{i} & \sim N(0, D) \\
\epsilon_{i} & \sim N\left(0, \sigma^{2}\right) \\
V_{i} & =Z_{i} D Z_{i}^{\prime}+\sigma^{2} .
\end{aligned}
$$

EBLUPs are also known as shrinkage estimators because they lend to be closer to 0 than the estimated effects if the random factors were treated as fixed effects.

BLUP mean
from the study note (Additional Notes on Shrinkage Means)

Intraclass Correlation

Coefficients

$u_{i}=\alpha_{i} \times \mu+\left(1-\alpha_{i}\right) \times \mu_{i}$, where

- u_{i} is the shrinkage mean for level i of the random factor,
- α_{i} is a weighting factor for level i, calculated by $\sigma_{i}^{2} /\left(\sigma_{\text {random factor }}^{2}+\sigma_{i}^{2}\right)$,
- σ_{i}^{2} is the variance for level i of the random factor, calculated by $\sigma_{\text {error }}^{2} / n_{i}$,
- $\sigma_{\text {random factor }}^{2}$ is the variance of the random effects associated with the random factor,
- μ is the overall mean of the response values,
- μ_{i} is the mean of the response values for level i of the random factor.

The formula above assumes no other fixed factors than the intercept.

The ICC is defined as the proportion of the total random variation in the response that is due to the variance of the random effects. For example, given the model:

$$
\begin{aligned}
Y_{i} & =X_{i} \beta+u_{i}+\epsilon_{i} \\
u_{j} & \sim N\left(0, \sigma_{u}^{2}\right) \\
\epsilon_{i j} & \sim N\left(0, \sigma^{2}\right)
\end{aligned}
$$

The ICC for the random effect u_{i} is:

$$
\mathrm{ICC}_{u_{i}}=\frac{\sigma_{u}^{2}}{\sigma_{u}^{2}+\sigma^{2}}
$$

TWO-LEVEL MODELS FOR CLUSTERED DATA

Best model for Rat Pup data

Model 3.3

$$
\begin{aligned}
Y_{i j}=\beta_{0} & +\beta_{1} X_{j}^{(1)}+\beta_{2} X_{j}^{(2)}+\beta_{3} X_{i j}^{(3)}+\beta_{4} X_{j}^{(4)}+u_{j}+\epsilon_{i j} \\
& \text { High/Low Treatment: } \quad \epsilon_{i j} \sim N\left(0, \sigma_{h / l}^{2}\right) \\
& \text { Control Treatment: } \quad \epsilon_{i j} \sim N\left(0, \sigma_{c}^{2}\right)
\end{aligned}
$$

Hypothesis 3.1:

Test whether the random effects, u_{j}, associated with the litter-specific intercepts can be omitted from Model 3.1.

Model 3.1

$$
\begin{aligned}
Y_{i j} & =\beta_{0}+\beta_{1} X_{j}^{(1)}+\beta_{2} X_{j}^{(2)}+\beta_{3} X_{i j}^{(3)}+\beta_{4} X_{j}^{(4)}+\beta_{5} X_{i j}^{(5)}+\beta_{6} X_{i j}^{(6)}+u_{j}+\epsilon_{i j} \\
u_{j} & \sim N\left(0, \sigma_{l . e .}^{2}\right) \\
\epsilon_{i j} & \sim N\left(0, \sigma^{2}\right)
\end{aligned}
$$

Model 3.1A

$$
\begin{aligned}
Y_{i j} & =\beta_{0}+\beta_{1} X_{j}^{(1)}+\beta_{2} X_{j}^{(2)}+\beta_{3} X_{i j}^{(3)}+\beta_{4} X_{j}^{(4)}+\beta_{5} X_{i j}^{(5)}+\beta_{6} X_{i j}^{(6)}+\epsilon_{i j} \\
\epsilon_{i j} & \sim N\left(0, \sigma^{2}\right)
\end{aligned}
$$

The null and alternative hypotheses are:

$$
\begin{align*}
& H_{0}: \sigma_{l . e .}=0 \tag{Model3.1A}\\
& H_{\mathrm{A}}: \sigma_{l . e .}>0
\end{align*}
$$

(Model 3.1)

Test statistic: $T=2 \times\{\log \operatorname{Lik}($ reference $)-\log \operatorname{Lik}($ nested $)\}$
p-value $=(0.5) \operatorname{Pr}\left(\chi_{0}^{2}>T\right)+(0.5) \operatorname{Pr}\left(\chi_{1}^{2}>T\right)=(0.5) \operatorname{Pr}\left(\chi_{1}^{2}>T\right)$.

Decision: The p-value is less than 1%. Therefore, we have strong evidence to reject the null hypothesis, and retain the litter-specific random effects (Model 3.1).

Model 3.2A: Same as Model 3.1 except

$$
\begin{aligned}
& \epsilon_{i j} \sim N\left(0, \sigma_{h}^{2}\right) \text { if high-dose treatment } \\
& \epsilon_{i j} \sim N\left(0, \sigma_{l}^{2}\right) \text { if low-dose treatment } \\
& \epsilon_{i j} \sim N\left(0, \sigma_{c}^{2}\right) \text { if control treatment }
\end{aligned}
$$

The null and alternative hypotheses are:

$$
\begin{align*}
& H_{0}: \sigma_{h}^{2}=\sigma_{l}^{2}=\sigma_{c}^{2}=\sigma^{2} \tag{Model3.1}\\
& H_{\mathrm{A}}: \text { At least one pair of residual variances } \\
& \text { is not equal to each other }
\end{align*}
$$

(Model 3.2A)

The test statistic is $T=2 \times\{\log \operatorname{Lik}($ reference $)-\log \operatorname{Lik}($ nested $)\}$

The p-value is $\operatorname{Pr}\left(\chi_{2}^{2}>T\right)$.

Decision: The p-value is less than $<.0001$. We have strong evidence to reject the null hypothesis and choose the model with heterogeneous variance (Model 3.2A).

Hypothesis 3.3:

Test whether $\sigma_{h}=\sigma_{l}$

Model 3.2A: Same as Model 3.1 except

$$
\begin{array}{ll}
\text { High Treatment } & \epsilon_{i j} \sim N\left(0, \sigma_{h}^{2}\right) \\
\text { Low Treatment } & \epsilon_{i j} \sim N\left(0, \sigma_{l}^{2}\right) \\
\text { Control Treatment } & \epsilon_{i j} \sim N\left(0, \sigma_{c}^{2}\right)
\end{array}
$$

Model 3.2B: Same as Model 3.1 except

$$
\begin{array}{ll}
\text { High/Low Treatment: } & \epsilon_{i j} \sim N\left(0, \sigma_{h / l}^{2}\right) \\
\text { Control Treatment: } & \epsilon_{i j} \sim N\left(0, \sigma_{c}^{2}\right)
\end{array}
$$

The null and alternative hypotheses are:

$$
\begin{align*}
& H_{0}: \sigma_{h}=\sigma_{l} \\
& H_{\mathrm{A}}: \sigma_{h} \neq \sigma_{l} \tag{Model3.2A}
\end{align*}
$$

(Model 3.2B)

The test statistic is $T=2 \times\{\log \operatorname{Lik}($ reference $)-\log \operatorname{Lik}($ nested $)\}$

The p-value is $\operatorname{Pr}\left(\chi_{1}^{2}>T\right)$

Decision: The p-value is greater than 5%. We fail to reject the null hypothesis. We should select Model 3.2B under the null hypothesis.

Hypothesis 3.4:

Test whether the residual variance for the combined high/low treatment group is equal to the residual variance for the control group.

Hypothesis 3.5:

The fixed effects associated with the treatment by sex interaction are equal to zero in Model 3.2B.

The null and alternative hypotheses are

$$
\begin{aligned}
& H_{0}: \sigma_{h / l}^{2}=\sigma_{c}^{2}=\sigma^{2} \\
& H_{\mathrm{A}}: \sigma_{h / l}^{2} \neq \sigma_{c}^{2}
\end{aligned}
$$

(Model 3.1)
(Model 3.2B)

The test statistic is $T=2 \times\{\log \operatorname{Lik}($ reference $)-\log \operatorname{Lik}($ nested $)\}$

The p-value is $\operatorname{Pr}\left(\chi_{1}^{2}>T\right)$.

Decision: The p-value is less than 0.0001 . We should reject the null hypothesis and choose Model 3.2B under the alternative hypothesis as our preferred model at this stage.

Model 3.3: Same as Model 3.2B except $\beta_{5}=\beta_{6}=0$

Model 3.2B: Same as Model 3.1 except

$$
\begin{array}{ll}
\text { High/Low Treatment: } & \epsilon_{i j} \sim N\left(0, \sigma_{h / l}^{2}\right) \\
\text { Control Treatment: } & \epsilon_{i j} \sim N\left(0, \sigma_{c}^{2}\right)
\end{array}
$$

The null and alternative hypotheses are

$$
\begin{align*}
& H_{0}: \beta_{5}=\beta_{6}=0 \tag{Model3.3}\\
& H_{\mathrm{A}}: \beta_{5} \neq 0 \text { or } \beta_{6} \neq 0 \tag{Model3.2B}
\end{align*}
$$

The test statistic is $T=2 \times\{\log \operatorname{Lik}($ reference $)-\log \operatorname{Lik}($ nested $)\}$

The p-value is $\operatorname{Pr}\left(\chi_{2}^{2}>T\right)$.

Decision: The p-value is 0.7255 and we do NOT reject the null hypothesis. We choose the nested model Model 3.3 under the null hypothesis as our preferred model.

Hypothesis 3.6: The fixed effects Model 3.3A: Same as Model 3.3 except $\beta_{1}=\beta_{2}=0$. associated with the treatment are equal to zero in Model 3.3.

Hierarchical Specification
Model 3.3: Same as Model 3.2B except $\beta_{5}=\beta_{6}=0$

The null and alternative hypotheses are

$$
\begin{align*}
& H_{0}: \beta_{1}=\beta_{2}=0 \tag{Model3.3A}\\
& H_{\mathrm{A}}: \beta_{1} \neq 0 \text { or } \beta_{2} \neq 0
\end{align*}
$$

(Model 3.3)

The test statistic is $T=2 \times\{\log \operatorname{Lik}($ reference $)-\log \operatorname{Lik}($ nested $)\}$
The p-value is $\operatorname{Pr}\left(\chi_{2}^{2}>T\right)$.

Decision: The p-value is 0.0001 . We reject the null hypothesis and choose Model $\mathbf{3 . 3}$ under the alternative hypothesis as our final model.

Full model: $\quad Y_{i j}=\beta_{0}+\beta_{1} X_{j}^{(1)}+\beta_{2} X_{j}^{(2)}+\beta_{3} X_{i j}^{(3)}+\beta_{4} X_{j}^{(4)}+u_{j}+\epsilon_{i j}$,
The Level 1 Model reflects the variation between pups within a given litter:

$$
Y_{i j}=b_{0 j}+\beta_{3} X_{i j}^{(3)}+\epsilon_{i j}
$$

The Level 2 Model reflects the variation between litters:

$$
b_{0 j}=\beta_{0}+\beta_{1} X_{j}^{(1)}+\beta_{2} X_{j}^{(2)}+\beta_{4} X_{j}^{(4)}+u_{j}
$$

Intraclass Correlation
Let $\epsilon_{i j} \sim N\left(0, \sigma^{2}\right)$ in Model 3.1:

Coefficients

$$
\mathrm{ICC}_{l i t t e r}=\frac{\sigma_{\text {l.e. }}^{2}}{\sigma_{\text {l.e. }}^{2}+\sigma^{2}}
$$

$Y_{i j}$: Birth weight observation on rat pup i within the j-th litter
$X_{j}^{(2)}$: Indicator variable for the low-dose treatment
$X_{i j}^{(3)}$: The indicator for female rat pups
$X_{i j}^{(4)}$: The litter size
u_{j} : The random effect associated with the intercept for litter j
$\epsilon_{i j}$: Residuals.

THREE-LEVEL MODELS FOR CLUSTERED DATA

The best model to fit

classroom data

Model 4.2

$$
Y_{i j k}=\beta_{0}+\beta_{1} X_{i j k}^{(1)}+\beta_{2} X_{i j k}^{(2)}+\beta_{3} X_{i j k}^{(3)}+\beta_{4} X_{i j k}^{(4)}+u_{k}+u_{j \mid k}+\epsilon_{i j k}
$$

where $u_{k} \sim N\left(0, \sigma_{i: s}^{2}\right), u_{j \mid k} \sim N\left(0, \sigma_{i: c}^{2}\right), \epsilon_{i j k} \sim N\left(0, \sigma^{2}\right) . u_{k}, u_{j \mid k}$, and $\epsilon_{i j k}$ are all mutually independent.

Hypothesis 4.1: Test whether Model 4.1: $Y_{i j k}=\beta_{0}+u_{k}+u_{j \mid k}+\epsilon_{i j k}$ the random effects associated with
the intercepts for classroom nested within schools can be omitted

Model 4.1A: $Y_{i j k}=\beta_{0}+u_{k}+\epsilon_{i j k}$,

The null and alternative hypotheses are:

$$
\begin{align*}
& H_{0}: \sigma_{i: c}^{2}=0 \tag{Model4.1A}\\
& H_{\mathrm{A}}: \sigma_{i: c}^{2}>0
\end{align*}
$$

(Model 4.1)

The test statistic is $T=2 \times\{\log \operatorname{Lik}($ reference $)-\log \operatorname{Lik}($ nested $)\}$
The p-value is $(0.5) \operatorname{Pr}\left(\chi_{0}^{2}>T\right)+(0.5) \operatorname{Pr}\left(\chi_{1}^{2}>T\right)=(0.5) \operatorname{Pr}\left(\chi_{1}^{2}>T\right)$.

Decision: The p-value is less than 1% which shows strong evidence to reject the null hypothesis. Therefore, we choose the model under the alternative hypothesis (Model 4.1) which retains the nested random classroom effects.

Hypothesis 4.2: Test whether the Model 4.1: $Y_{i j k}=\beta_{0}+u_{k}+u_{j \mid k}+\epsilon_{i j k}$ fixed effects associated with the four student-level covariates (mathkind,

Model 4.2: $Y_{i j k}=\beta_{0}+\beta_{1} X_{i j k}^{(1)}+\beta_{2} X_{i j k}^{(2)}+\beta_{3} X_{i j k}^{(3)}+\beta_{4} X_{i j k}^{(4)}+u_{k}+u_{j \mid k}+\epsilon_{i j k}$ sex, minority, and ses) should be The null and alternative hypotheses are: added to Model 4.1.

$$
\begin{equation*}
H_{0}: \beta_{1}=\beta_{2}=\beta_{3}=\beta_{4}=0 \tag{Model4.1}
\end{equation*}
$$

$$
\begin{equation*}
H_{\mathrm{A}}: \text { At least one fixed effect is not equal to zero } \tag{Model4.2}
\end{equation*}
$$

The test statistic is $T=2 \times\{\log \operatorname{Lik}($ reference $)-\log \operatorname{Lik}($ nested $)\}$

The p-value is $\operatorname{Pr}\left(\chi_{4}^{2}>T\right)$

Decision: The p-value is less than 0.5% and we conclude that at least one of the fixed effects associated with the Level 1 covariates is significant. Therefore, we proceed with Model 4.2 as our preferred model.

Hypothesis 4.3: The fixed effect Model 4.3:
associated with the classroom-level covariate yearstea $\left(X_{j k}^{(5)}\right)$ should be retained in Model 4.3.

$$
\begin{aligned}
Y_{i j k}= & \beta_{0}+\beta_{1} X_{i j k}^{(1)}+\beta_{2} X_{i j k}^{(2)}+\beta_{3} X_{i j k}^{(3)}+\beta_{4} X_{i j k}^{(4)}+\beta_{5} X_{j k}^{(5)}+\beta_{6} X_{j k}^{(6)}+\beta_{7} X_{j k}^{(7)} \\
& +u_{k}+u_{j \mid k}+\epsilon_{i j k}
\end{aligned}
$$

The null and alternative hypotheses are

$$
H_{0}: \beta_{5}=0 \quad \text { vs. } \quad H_{\mathrm{A}}: \beta_{5} \neq 0
$$

The test statistic is t-value $\hat{\beta}_{5} / \operatorname{se}\left(\hat{\beta}_{5}\right)$

The p-value is $2 \operatorname{Pr}(t \geq \mid t$-value $\mid)$.

Hypothesis 4.4: The fixed effect The null and alternative hypotheses are $H_{0}: \beta_{6}=0$ vs. $H_{\mathrm{A}}: \beta_{6} \neq 0$ associated with the classroom-level covariate mathprep $\left(X_{j k}^{(6)}\right)$ should be retained in Model 4.3.

The test statistic is t-value $=\hat{\beta}_{6} / \operatorname{se}\left(\hat{\beta}_{6}\right)$

The p-value is $2 \operatorname{Pr}(t \geq \mid t$-value $\mid)$

Hypothesis 4.5: The fixed effect The null and alternative hypotheses are $H_{0}: \beta_{7}=0$ vs. $H_{\mathrm{A}}: \beta_{7} \neq 0$. associated with the classroom-level covariate mathknow $\left(X_{j k}^{(7)}\right)$ should be retained in Model 4.3. The test statistic is t-value $=\hat{\beta}_{7} / \operatorname{se}\left(\hat{\beta}_{7}\right)$

The p-value is $2 \operatorname{Pr}(t \geq \mid t$-value $\mid)$

Hypothesis 4.6: Test whether Models:
the fixed effect associated with the school-level covariate housepov $\left(\beta_{8}\right)$ should be added to Model 4.2.

$$
\begin{aligned}
Y_{i j k}= & \beta_{0}+\beta_{1} X_{i j k}^{(1)}+\beta_{2} X_{i j k}^{(2)}+\beta_{3} X_{i j k}^{(3)}+\beta_{4} X_{i j k}^{(4)} \\
& +u_{k}+u_{j \mid k}+\epsilon_{i j k}
\end{aligned}
$$

(Model 4.2)

$$
\begin{align*}
Y_{i j k}= & \beta_{0}+\beta_{1} X_{i j k}^{(1)}+\beta_{2} X_{i j k}^{(2)}+\beta_{3} X_{i j k}^{(3)}+\beta_{4} X_{i j k}^{(4)}+\beta_{8} X_{k}^{(8)} \tag{Model4.4}\\
& +u_{k}+u_{j \mid k}+\epsilon_{i j k}
\end{align*}
$$

The null and alternative hypotheses are:

$$
\begin{align*}
& H_{0}: \beta_{8}=0 \tag{Model4.2}\\
& H_{\mathrm{A}}: \beta_{8} \neq 0 \tag{Model4.4}
\end{align*}
$$

The test statistic is t-value $=\hat{\beta}_{8} / \operatorname{se}\left(\hat{\beta}_{8}\right)$

The p-value is $2 \operatorname{Pr}(t \geq \mid t$-value $\mid)$

Hierarchical Model

Intraclass Correlation

Full model:

$$
Y_{i j k}=\beta_{0}+\beta_{1} X_{i j k}^{(1)}+\beta_{2} X_{i j k}^{(2)}+\beta_{3} X_{i j k}^{(3)}+\beta_{4} X_{i j k}^{(4)}+u_{k}+u_{j \mid k}+\epsilon_{i j k}
$$

Level 1 Model (Student)

$$
Y_{i j k}=b_{0 j \mid k}+\beta_{1} X_{i j k}^{(1)}+\beta_{2} X_{i j k}^{(2)}+\beta_{3} X_{i j k}^{(3)}+\beta_{4} X_{i j k}^{(4)}+\epsilon_{i j k}
$$

where $b_{0 j \mid k}$ is the unobserved classroom-specific intercepts, $X_{i j k}^{(1)}$ to $X_{i j k}^{(4)}$ are the student level covariates, and $\epsilon_{i j k} \sim N\left(0, \sigma^{2}\right)$.

Level 2 Model (Classroom)

$$
b_{0 j \mid k}=b_{0 k}+u_{j \mid k}
$$

where $b_{0 k}$ is the unobserved intercept, specific to the k-th school, and $u_{j \mid k}$ is random effect associated with classroom j within school k.

Level 3 Model (School)

$$
b_{0 k}=\beta_{0}+u_{k}
$$

where $u_{k} \sim N\left(0, \sigma_{i: s}^{2}\right)$.
The school-level ICC:

$$
\mathrm{ICC}_{\text {school }}=\frac{\sigma_{i: s}^{2}}{\sigma_{i: s}^{2}+\sigma_{i: c}^{2}+\sigma^{2}}
$$

The classroom-level ICC:

$$
\mathrm{ICC}_{\text {classroom }}=\frac{\sigma_{i: s}^{2}+\sigma_{i: c}^{2}}{\sigma_{i: s}^{2}+\sigma_{i: c}^{2}+\sigma^{2}}
$$

$Y_{i j k}$: the dependent variable mathgain
Level 1 covariates (Student):
$X_{i j k}^{(1)}$ (mathkind): Student's math score in the kindergarten year
$X_{i j k}^{(2)}(\operatorname{sex}):$ Indicator variable $(0=$ boy, $1=$ girl $)$
$X_{i j k}^{(3)}$ (minority): Indicator variable $(0=$ non-minority, $1=$ minority $)$
$X_{i j k}^{(4)}$ (ses): Student socioeconomic status.

Level 2 covariates (Classroom):

$X_{j k}^{(5)}$ (yearstea): First-grade teacher's years of teaching experience
$X_{j k}^{(6)}$ (mathprep): First-grade teacher's math preparations
$X_{j k}^{(7)}$ (mahtknow): First-grade teacher's math content knowledge

Level 3 covariates (School):

$X_{k}^{(8)}$ (housepov): Percentage of households in the neighborhood of the school below the poverty level
u_{k} : the random effects associated with the intercept for school k,
$u_{j \mid k}$: the random effect associated with the intercept for classroom j within school k, and
$\epsilon_{i j k}$: the residuals, for the i th student, in the j th classroom, within the k th school.

MODELS FOR REPEATED-MEASURES DATA

The best model to fit

Rat Brain data

$$
Y_{t i}=\beta_{0}+\beta_{1} X_{t i}^{(1)}+\beta_{2} X_{t i}^{(2)}+\beta_{3} X_{t i}^{(3)}+\beta_{4} X_{t i}^{(4)}+\beta_{5} X_{t i}^{(5)}+u_{0 i}+u_{3 i} X_{t i}^{(3)}+\epsilon_{t i}
$$

Hypothesis 5.1: Test whether the Models: random treatment effect associated with animal $i, u_{3 i}$, can be omitted from Model 5.2

Model 5.2

$$
\begin{aligned}
Y_{t i}= & \beta_{0}+\beta_{1} X_{t i}^{(1)}+\beta_{2} X_{t i}^{(2)}+\beta_{3} X_{t i}^{(3)}+\beta_{4} X_{t i}^{(4)}+\beta_{5} X_{t i}^{(5)} \\
& +u_{0 i}+\epsilon_{t i} \\
Y_{t i}= & \beta_{0}+\beta_{1} X_{t i}^{(1)}+\beta_{2} X_{t i}^{(2)}+\beta_{3} X_{t i}^{(3)}+\beta_{4} X_{t i}^{(4)}+\beta_{5} X_{t i}^{(5)} \\
& +u_{0 i}+u_{3 i} X_{t i}^{(3)}+\epsilon_{t i}
\end{aligned}
$$

(Model 5.2)

The null and alternative hypotheses are:

$$
\begin{align*}
& H_{0}: D=\left[\begin{array}{cc}
\sigma_{i n}^{2} & 0 \\
0 & 0
\end{array}\right] \tag{Model5.1}\\
& H_{\mathrm{A}}: D=\left[\begin{array}{ll}
\sigma_{i n}^{2} & \sigma_{i, t} \\
\sigma_{i, t} & \sigma_{t r}^{2}
\end{array}\right]
\end{align*}
$$

(Model 5.2)

The test statistic is $T=2 \times\{\log \operatorname{Lik}($ reference $)-\log \operatorname{Lik}($ nested $)\}$

The p-value is $(0.5) \operatorname{Pr}\left(\chi_{1}^{2}>T\right)+(0.5) \operatorname{Pr}\left(\chi_{2}^{2}>T\right)$

Decision: The p-value for testing Hypothesis 5.1 is less than 1%. We have strong evidence to reject the null hypothesis and select the model under the alternative hypothesis Model 5.2 which is our preferred model at this stage.

Hypothesis 5.2: Test whether In Model 5.3. we allow the residual variances to differ for each level of treatment, residual variances should differ for by including separate residual variances (σ_{b}^{2} and σ_{c}^{2}) for the basal and carbachol treateach level of treatment ments.

The null and alternative hypotheses are

$$
\begin{align*}
& H_{0}: \sigma_{b}^{2}=\sigma_{c}^{2} \tag{Model5.2}\\
& H_{\mathrm{A}}: \sigma_{b}^{2} \neq \sigma_{c}^{2} \tag{Model5.3}
\end{align*}
$$

The test statistic is $T=2 \times\{\log \operatorname{Lik}($ reference $)-\log \operatorname{Lik}($ nested $)\}$

The p-value is p-value $=\operatorname{Pr}\left(\chi_{1}^{2}>T\right)$.

The p-value is 0.6965 showing lack of evidence to reject the null hypothesis. We should choose the model under the null hypothesis, Model 5.2, and keep the model as our preferred model at this stage.

Hypothesis 5.3: The fixed effects The null and alternative hypotheses are $H_{0}: \beta_{4}=\beta_{5}=0$ vs. $H_{\mathrm{A}}: \beta_{4} \neq$ or $\beta_{5} \neq 0$. associated with the region by treat- We test Hypothesis 5.3 using Type III F-test in \mathbf{R}, where the test statistic follows a ment interaction can be omitted from F distribution with degrees of freedom $(2,20)$.

Model 5.2

Akaike Information Criterion
AIC $=(-2) \times \operatorname{logLik}+2 \times p$
p is the number of parameters estimated in the model.

Bayesian Information Criterion $\quad \mathrm{BIC}=(-2) \times \log \operatorname{Lik}+\log (n) \times p$
n is the number of observation in the modeled dataset.
$Y_{t i}$: the dependent variable activate
$X_{t i}^{(1)}=$ REGION1 and $X_{t i}^{(2)}=$ REGION2: indicator variables
$X_{t i}^{(3)}=$ TREATMENT: indicator variable, 1 for Carbachol and 0 for Basal treatment
$u_{0 i}$: the random intercept
$u_{3 i}$: the random treatment effect associated with animal i
$\epsilon_{t i}$: the residuals

RANDOM COEFFICIENT MODELS FOR LONGITUDINAL DATA

The best model to fit autism data

Hypothesis 6.1: Test whether the random effects $\left(u_{1 i}\right)$ associated with the quadratic effect of age can be omitted from the model Model 6.2

Hypothesis 6.2: Test whether the fixed effects associated with the agesquared \times sicdegp interaction are equal to zero in Model 6.2.

Model 6.3

$$
\begin{aligned}
Y_{t i}= & \beta_{0}+\beta_{1} X_{t i}^{(1)}+\beta_{2} X_{t i}^{(2)}+\beta_{3} X_{i}^{(3)}+\beta_{4} X_{i}^{(4)}+\beta_{5} X_{t i}^{(1)} X_{t i}^{(3)}+\beta_{6} X_{t i}^{(1)} X_{t i}^{(4)} \\
& +u_{1 i} X_{t i}^{(1)}+u_{2 i} X_{t i}^{(2)}+\epsilon_{t i}
\end{aligned}
$$

Model 6.2

$$
\begin{aligned}
Y_{t i}= & \beta_{0}+\beta_{1} X_{t i}^{(1)}+\beta_{2} X_{t i}^{(2)}+\beta_{3} X_{i}^{(3)}+\beta_{4} X_{i}^{(4)}+\beta_{5} X_{t i}^{(5)}+\beta_{6} X_{t i}^{(6)}+\beta_{7} X_{t i}^{(7)} \\
& +\beta_{8} X_{t i}^{(8)}+u_{1 i} X_{t i}^{(1)}+u_{2 i} X_{t i}^{(2)}+\epsilon_{t i}
\end{aligned}
$$

The null and alternative hypotheses are

$$
\begin{align*}
& H_{0}: D=\left[\begin{array}{cc}
\sigma_{a}^{2} & 0 \\
0 & 0
\end{array}\right] \tag{Model6.2A}\\
& H_{\mathrm{A}}: D=\left[\begin{array}{cc}
\sigma_{a}^{2} & \rho_{a, a s} \sigma_{a} \sigma_{a s} \\
\rho_{a, a s} \sigma_{a} \sigma_{a s} & \sigma_{a s}^{2}
\end{array}\right]
\end{align*}
$$

(Model 6.2)
where D is the variance-covariance matrix of $u_{1 i}$ and $u_{2 i}$.

The test statistic is $T=2 \times\{\log \operatorname{Lik}($ reference $)-\log \operatorname{Lik}($ nested $)\}$

The p value is $(0.5) \operatorname{Pr}\left(\chi_{1}^{2}>T\right)+(0.5) \operatorname{Pr}\left(\chi_{2}^{2}>T\right)$.

Decision: The p-value for testing Hypothesis 6.1 is less than 1%. We have strong evidence to reject the null hypothesis and select the model under the alternative hypothesis Model 6.2. The random coefficients associated with the quadratic, as well as linear effects of age should be included in Model 6.2.

The the null and alternative hypotheses are

$$
\begin{align*}
& H_{0}: \beta_{7}=\beta_{8}=0 \tag{Model6.3}\\
& H_{\mathrm{A}}: \beta_{7} \neq \text { or } \beta_{8} \neq 0 \tag{Model6.2}
\end{align*}
$$

The test statistic is $T=2 \times\{\log \operatorname{Lik}($ reference $)-\log L i k($ nested $)\}$
The p value is $\operatorname{Pr}\left(\chi_{2}^{2}>T\right)$.

Decision: The p-value is 0.3926 which shows no evidence to reject the null hypothesis. We exclude the fixed effects associated with the age-squared \times sicdegp interaction and choose Model 6.3.

Hypothesis 6.3: The fixed effects associated with the age \times sicdegp interaction are equal to zero in Model
6.3.

The null and alternative hypotheses are

$$
\begin{aligned}
& H_{0}: \beta 5=\beta_{6}=0 \\
& H_{\mathrm{A}}: \beta_{5} \neq \text { or } \beta_{6} \neq 0
\end{aligned}
$$

(Model 6.4)
(Model 6.3)

We test Hypothesis 6.3 using Type I F-test, where the test statistic follows a F distribution with degrees of freedom $(2,448)$.

Decision: The p-value is less than 0.0001 showing strong evidence to reject the null hypothesis. We include the fixed effects associated with the age \times sicdegp interaction and choose Model $\mathbf{6 . 3}$ as our final model.
$Y_{t i}$: the dependent variable activate
The $X^{(1)}$: (age.2) variable represents the value of age minus 2.
The $X^{(2)}$: (age. 2 sq) variable represents age. 2 squared.
The $X_{i}^{(3)}:$ sicdegp $1_{i}=1$ if sicdegp in level 1,0 otherwise.
The $X_{i}^{(4)}: \operatorname{sicdegp}_{i}=1$ if sicdegp in level 2,0 otherwise.

MODELS FOR CLUSTERED LONGITUDINAL DATA

The best model to fit veneer data

Hypothesis 7.1: The nested random effects $u_{0 i \mid j}$ associated with teeth within the same patient can be omitted from Model 7.1.

Model 7.3

$$
Y_{t i j}=\beta_{0}+\beta_{1} X_{t}^{(1)}+\beta_{2} X_{i j}^{(2)}+\beta_{3} X_{i j}^{(3)}+\beta_{4} X_{j}^{(4)}+u_{0 j}+u_{1 j} X_{t}^{(1)}+u_{0 i \mid j}+\epsilon_{t i j}
$$

Model 7.1:

$$
\begin{aligned}
Y_{t i j}= & \beta_{0}+\beta_{1} X_{t}^{(1)}+\beta_{2} X_{i j}^{(2)}+\beta_{3} X_{i j}^{(3)}+\beta_{4} X_{j}^{(4)}+\beta_{5} X_{t i j}^{(5)}+\beta_{6} X_{t i j}^{(6)}+\beta_{7} X_{t j}^{(7)} \\
& +u_{0 j}+u_{1 j} X_{t}^{(1)}+u_{0 i \mid j}+\epsilon_{t i j}
\end{aligned}
$$

The null and alternative hypotheses are

$$
\begin{align*}
& H_{0}: \sigma_{t \mid p}^{2}=0 \tag{Model7.1A}\\
& H_{\mathrm{A}}: \sigma_{t \mid p}^{2}>0 \tag{Model7.1}
\end{align*}
$$

The test statistic is $T=2 \times\{\log \operatorname{Lik}($ reference $)-\log \operatorname{Lik}($ nested $)\}$

The p-value is $(0.5) \operatorname{Pr}\left(\chi_{0}^{2}>T\right)+(0.5) \operatorname{Pr}\left(\chi_{1}^{2}>T\right)$.

Decision: The p-value is less than 1%, showing strong evidence to reject the null hypothesis. Therefore, we choose the model under the alternative hypothesis (Model 7.1) which retains the rested random tooth effects.

Hypothesis 7.2: The variance of the residuals is constant (homogeneous) across the time points in Model 7.2C.

Hypothesis 7.3: Test whether the fixed effects associated with the twoway interactions between time and the patient- and tooth-level covariates can be omitted from Model 7.1.

Test whether the nested random effects $u_{0 i j j}$ associated with teeth within the same patient can be omitted from Model 7.1

Model 7.2C is similar to Model 7.1 except that

$$
\epsilon_{t i j} \sim N\left(0, \sigma_{t}^{2}\right), \quad t=1,2
$$

The null and alternative hypotheses are

$$
\begin{align*}
& H_{0}: \sigma_{1}^{2}=\sigma_{2}^{2} \tag{Model7.1}\\
& H_{\mathrm{A}}: \sigma_{1}^{2} \neq \sigma_{2}^{2}
\end{align*}
$$

(Model 7.2C)

The test statistic is $T=2 \times\{\log \operatorname{Lik}($ reference $)-\log \operatorname{Lik}($ nested $)\}$
The p-value is $\operatorname{Pr}\left(\chi_{1}^{2}>T\right)$.

Decision: The p-value is 0.3289 . We do NOT reject the null hypothesis at $\alpha=1 \%$. Therefore, we choose the model under the null hypothesis Model 7.1 (homogeneous variance).

Model 7.1:

$$
\begin{aligned}
Y_{t i j}= & \beta_{0}+\beta_{1} X_{t}^{(1)}+\beta_{2} X_{i j}^{(2)}+\beta_{3} X_{i j}^{(3)}+\beta_{4} X_{j}^{(4)}+\beta_{5} X_{t i j}^{(5)}+\beta_{6} X_{t i j}^{(6)}+\beta_{7} X_{t j}^{(7)} \\
& +u_{0 j}+u_{1 j} X_{t}^{(1)}+u_{0 i \mid j}+\epsilon_{t i j}
\end{aligned}
$$

The null and alternative hypotheses are

$$
\begin{align*}
& H_{0}: \beta_{5}=\beta_{6}=\beta_{7}=0 \tag{Model7.3}\\
& H_{\mathrm{A}}: \beta_{5} \neq 0, \text { or } \beta_{6} \neq 0, \text { or } \beta_{7} \neq 0
\end{align*}
$$

(Model 7.1)

The test statistic is $T=2 \times\{\log \operatorname{Lik}($ reference $)-\log \operatorname{Lik}($ nested $)\}$

The p-value is p-value $=\operatorname{Pr}\left(\chi_{3}^{2}>T\right)$.

Decision: The p-value is 0.606 for testing Hypothesis 7.3. We DO NOT reject the null hypothesis and we choose Model 7.3 as our final model.

Model 7.1A:

$$
\begin{aligned}
Y_{t i j}= & \beta_{0}+\beta_{1} X_{t}^{(1)}+\beta_{2} X_{i j}^{(2)}+\beta_{3} X_{i j}^{(3)}+\beta_{4} X_{j}^{(4)} \\
& +\beta_{5} X_{t i j}^{(5)}+\beta_{6} X_{t i j}^{(6)}+\beta_{7} X_{t j}^{(7)}+u_{0 j}+u_{1 j} X_{t}^{(1)}+\epsilon_{t i j}
\end{aligned}
$$

The null and alternative hypotheses are

$$
\begin{align*}
& H_{0}: \sigma_{t \mid p}^{2}=0 \tag{Model7.1A}\\
& H_{\mathrm{A}}: \sigma_{t \mid p}^{2}>0 \tag{Model7.1}
\end{align*}
$$

The variance of the residuals is constant (homogeneous) across the time points in Model 7.2C

The test statistic is $T=2 \times\{\log \operatorname{Lik}($ reference $)-\log \operatorname{Lik}($ nested $)\}$
The p-value is p-value $=(0.5) \operatorname{Pr}\left(\chi_{0}^{2}>T\right)+(0.5) \operatorname{Pr}\left(\chi_{1}^{2}>T\right)=(0.5) \operatorname{Pr}\left(\chi_{1}^{2}>T\right)$.

Model 7.2c is similar to Model 7.1 except that

$$
\epsilon_{t i j} \sim N\left(0, \sigma_{t}^{2}\right), \quad t=1,2
$$

The null and alternative hypotheses are

$$
\begin{align*}
& H_{0}: \sigma_{1}^{2}=\sigma_{2}^{2} \tag{Model7.1}\\
& H_{\mathrm{A}}: \sigma_{1}^{2} \neq \sigma_{2}^{2}
\end{align*}
$$

(Model 7.2C)

The test statistic is $T=2 \times\{\log \operatorname{Lik}($ reference $)-\log \operatorname{Lik}($ nested $) ~\}$
The p-value is p-value $=\operatorname{Pr}\left(\chi_{1}^{2}>T\right)$.

Full model:

$$
\begin{aligned}
\mathrm{GCF}_{t i j}= & \beta_{0}+\beta_{1} \mathrm{TIME}_{t}+\beta_{2} \mathrm{BAS}_{-} \mathrm{GCP}_{i j}+\beta_{3} \mathrm{CDA}_{i j}+\beta_{4} \mathrm{AGE}_{j} \\
& +u_{0 j}+u_{1 j} \mathrm{TIME}_{t}+u_{0 i \mid j}+\epsilon_{t i j}
\end{aligned}
$$

Level 1 Model (Time):

$$
\mathrm{GCF}_{t i j}=b_{0 i \mid j}+b_{1 j} \mathrm{TIME}_{t}+\epsilon_{t i j}
$$

Level 2 Model (Tooth)

$$
b_{0 i \mid j}=b_{0 j}+\beta_{2} \mathrm{BAS}_{-} \mathrm{GCP}_{i j}+\beta_{3} \mathrm{CDA}_{i j}+u_{0 i \mid j}
$$

Level 3 Model (Patient)

At the Patient level indexed by j :

$$
\begin{aligned}
& b_{0 j}=\beta_{0}+\beta_{4} \mathrm{AGE}_{j}+u_{0 j} \\
& b_{1 j}=\beta_{1}+u_{1 j}
\end{aligned}
$$

$Y_{t i j}$: dependent variable $\mathrm{gcf}_{t i j}$
$X_{t}^{(1)}=$ time $_{t}$
$X_{i j}^{(2)}=$ base_gcf $_{i j}$
$X_{i j}^{(3)}=\mathrm{cda}_{i j}$
$X_{j}^{(4)}=$ age $_{j}$ at visit t on tooth i nested within patient j
$u_{0 j}$: the patient-specific random intercept
$u_{1 j}$: the patient-specific random coefficient associated with the time slope
$u_{0 i \mid j}$: the random effect associated with a tooth nested within a patient

MODELS FOR DATA WITH CROSSED RANDOM FACTORS

The best model to fit sat data

Hypothesis 8.1: Test whether the random effects u_{i} associated with the students can be omitted from Model

8.1

Model 8.1

$$
Y_{t i j}=\beta_{0}+\beta_{1} X_{t i j}+u_{i}+v_{j}+\epsilon_{t i j}
$$

Model 8.2

$$
Y_{t i j}=\beta_{0}+\beta_{1} \times X_{t i j}+v_{j}+\epsilon_{t i j}
$$

The null and alternative hypotheses are:

$$
\begin{aligned}
& H_{0}: \sigma_{s t}^{2}=0 \\
& H_{\mathrm{A}}: \sigma_{s t}^{2}>0
\end{aligned}
$$

(Model 8.2)
(Model 8.1)

The test statistic is $T=2 \times\{\log \operatorname{Lik}($ reference $)-\log \operatorname{Lik}($ nested $)\}$
The p-value is $(0.5) \operatorname{Pr}\left(\chi_{0}^{2}>T\right)+(0.5) \operatorname{Pr}\left(\chi_{1}^{2}>T\right)=(0.5) \operatorname{Pr}\left(\chi_{1}^{2}>T\right)$.

Decision: The p-value is less than 1% for testing Hypothesis 8.1, which shows strong evidence to reject the null hypothesis. Therefore, we should retain the random student effects and choice Model 8.1.

Model 8.3:

$$
Y_{t i j}=\beta_{0}+\beta_{1} \times X_{t i j}+u_{i}+\epsilon_{t i j}
$$

The null and alternative hypotheses are

$$
\begin{align*}
& H_{0}: \sigma_{t e}^{2}=0 \tag{Model8.3}\\
& H_{\mathrm{A}}: \sigma_{t e}^{2}>0 \tag{Model8.1}
\end{align*}
$$

The test statistic is $T=2 \times\{\log \operatorname{Lik}($ reference $)-\log \operatorname{Lik}($ nested $)\}$

The p-value is p-value $=(0.5) \operatorname{Pr}\left(\chi_{1}^{2}>T\right)$.

Decision: The p-value for testing Hypothesis 8.2 is less than 1% and thus we have strong evidence to reject the null hypothesis. We should retain the random teacher effects (Model 8.1).

Hypothesis 8.3: Test whether the fixed effects associated with the year variable can be omitted in Model

8.1

The null and alternative hypotheses are:

$$
\begin{aligned}
& H_{0}: \beta_{1}=0 \\
& H_{\mathrm{A}}: \beta_{1} \neq 0
\end{aligned}
$$

(Model 8.1)
The test statistic is $T=\frac{\hat{\beta}_{1}}{\operatorname{se}\left(\hat{\beta}_{1}\right)}$
The p-value is $\operatorname{Pr}(Z>T)$ using the normal approximation.

Decision: The p-value for testing Hypothesis 8.3 is less than 1% and we should reject the null hypothesis. Therefore, we choose Model 8.1 as our final model.

General formula: $\hat{u}_{i}=\hat{D} Z_{i}^{\prime} \hat{V}_{i}^{-1}\left(y_{i}-\boldsymbol{X}_{i} \hat{\boldsymbol{\beta}}\right)$
In Model 8.1:

$$
\begin{aligned}
& \hat{u}_{i}=\frac{\hat{\sigma}_{s t}^{2}}{\hat{\sigma}_{s t}^{2}+\hat{\sigma}_{t e}^{2}+\hat{\sigma}^{2}}\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}\right) \\
& \hat{v}_{i}=\frac{\hat{\sigma}_{t e}^{2}}{\hat{\sigma}_{s t}^{2}+\hat{\sigma}_{t e}^{2}+\hat{\sigma}^{2}}\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}\right) .
\end{aligned}
$$

In Model 8.2:

$$
\hat{v}_{i}=\frac{\hat{\sigma}_{t e}^{2}}{\hat{\sigma}_{t e}^{2}+\hat{\sigma}^{2}}\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}\right)
$$

In Model 8.3:

$$
\hat{u}_{i}=\frac{\hat{\sigma}_{s t}^{2}}{\hat{\sigma}_{s t}^{2}+\hat{\sigma}^{2}}\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}\right) .
$$

$Y_{t i j}:$ dependent variable math $_{t i j}$
$X_{t i j}:$ year $_{t i j}$ measured in t-th year, i-th student being instructed by the j-th teacher
$u_{i} \sim N\left(0, \sigma_{s t}^{2}\right)$ and $v_{j} \sim N\left(0, \sigma_{t e}^{2}\right)$: the two random effects
$\epsilon_{t i j} \sim N\left(0, \sigma^{2}\right):$ residuals

Part C: Statistical Learning

ASSESSING MODEL ACCURACY

Mean Squared Error

$$
\begin{aligned}
& \operatorname{MSE}=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\hat{f}\left(x_{i}\right)\right)^{2} \\
& \mathrm{E}\left[\left(y_{0}-\hat{f}\left(x_{0}\right)\right)^{2}\right]=\operatorname{Var}\left(\hat{f}\left(x_{0}\right)\right)+\left[\operatorname{Bias}\left(\hat{f}\left(x_{0}\right)\right)\right]^{2}+\operatorname{Var}(\epsilon)
\end{aligned}
$$

CLASSIFICATION TREES

Training error rate

$$
\frac{1}{n} \sum_{i=1}^{n} I\left(y_{i} \neq \hat{y}_{i}\right), \quad\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots,\left(x_{n}, y_{n}\right)\right\}
$$

Test error rate
Average $\left\{I\left(y_{0} \neq \hat{y}_{0}\right)\right\}$

Bayes error rate
$\mathrm{E}\left[1-\max _{j} \operatorname{Pr}\left(Y=j \mid X=x_{0}\right)\right] \approx 1-\frac{\sum_{i=1}^{m} \max _{j} \operatorname{Pr}\left(Y_{i}=j \mid X_{i}\right)}{m}$
Euclidean distance
E.d. $(X, Y)=\sqrt{\sum_{j=1}^{p}\left(x_{j}-y_{j}\right)^{2}}, \quad X=\left(x_{1}, \cdots, x_{p}\right), Y=\left(y_{1}, \cdots, y_{p}\right)$

Conditional probability for class $m \quad \operatorname{Pr}\left(Y=m \mid X=x_{0}\right)=\frac{1}{K} \sum_{i \in \mathcal{N}_{0}} I\left(y_{i}=m\right) \quad$ for $m=1, \cdots, M$.
in the KNN classifier

Classification error rate	$E_{m}=1-\max _{k}\left(\hat{p}_{m k}\right)$
Gini index	$G_{m}=\sum_{k=1}^{K} \hat{p}_{m k}\left(1-\hat{p}_{m k}\right)$
Cross-entropy	$D_{m}=-\sum_{k=1}^{K} \hat{p}_{m k} \log \left(\hat{p}_{m k}\right)$

\hat{y}_{0} : the predicted class label that results from applying the classifier to the test observation with predictor x_{0} $\hat{p}_{m k}$: the proportion of training observations in the m th region that are from the k th class

REGRESSION TREES

Residual sum of squares (RSS)

RSS $=\sum_{j=1}^{J} \sum_{i \in R_{j}}\left(y_{i}-\hat{y}_{R_{j}}\right)^{2} \quad$ for regions $R_{j}, j=1, \cdots, J$
Cost complexity pruning (weakest link pruning)
$\underset{T}{\operatorname{minimize}} \sum_{m=1}^{|T|} \sum_{i: x_{i} \in R_{m}}\left(y_{i}-\hat{y}_{R_{m}}\right)^{2}+\alpha|T|$
α controls the trade-off between the subtree's complexity and its fit to the training data. As α increases, the subtree will end up with fewer terminal nodes.
$\hat{y}_{R_{j}}$: the mean response for the training observations within the j th region
$\hat{y}_{R_{m}}$: the mean of the training observations in R_{m}
T : a decision tree
$|T|$: the number of terminal nodes of the tree T

BAGGING AND BOOSTING

Bagging decision tree prediction $\quad \hat{f}_{\text {bag }}(x)=\frac{1}{N} \sum_{n=1}^{N} \hat{f}^{* n}(x)$
Boosted decision tree prediction

$$
\hat{f}(x)=\sum_{b=1}^{B} \lambda \hat{f}^{b}(x)
$$

$\hat{f}^{* n}(x)$: the output of the decision tree fitted to the nth bootstrapped training set
$\hat{f}^{b}(x)$: the output of the b th tree fitted to the residuals from the first $b-1$ trees
λ : the shrinkage parameter

PRINCIPAL COMPONENTS ANALYSIS

The set of the first principal components

Loading vector of the first principal components

Scores of the first principal component

The first principal component of observation i

The second principal component of observation i
$z_{i 2}=\sum_{j=1}^{p} \phi_{j 2} x_{i j}=\phi_{12} x_{i 1}+\phi_{22} x_{i 2}+\cdots \phi_{p 2} x_{i p}$

Proportion of Variance Explained (PVE)

Variance explained by the m th principal component $\frac{1}{n} \sum_{i=1}^{n} z_{i m}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(\sum_{j=1}^{p} \phi_{j m} x_{i j}\right)^{2}$

PVE of the m th principal component

$$
\mathrm{PVE}_{m}=\frac{\frac{1}{n} \sum_{i=1}^{n} z_{i m}^{2}}{\sum_{j=1}^{p} \operatorname{Var}\left(X_{j}\right)}=\frac{\sum_{i=1}^{n} z_{i m}^{2}}{\sum_{j=1}^{p} \sum_{i=1}^{n} x_{i j}^{2}}
$$

K-MEANS CLUSTERING

Minimize total within-cluster variation

Within-cluster variation estimated using squared Euclidean distance

Alternative formula of the variation

$$
\begin{aligned}
& \underset{C_{1}, \cdots, C_{K}}{\operatorname{minimize}}\left\{\sum_{k=1}^{K} W\left(C_{k}\right)\right\} \\
& W\left(C_{k}\right)=2 \sum_{i \in C_{k}} \sum_{j=1}^{p}\left(x_{i j}-\bar{x}_{k j}\right)^{2}, \text { where } \bar{x}_{k j}=\frac{1}{\left|C_{k}\right|} \sum_{i \in C_{k}} x_{i j}
\end{aligned}
$$

$$
W\left(C_{k}\right)=\frac{1}{\left|C_{k}\right|} \sum_{i, i^{\prime} \in C_{k}} \sum_{j=1}^{p}\left(x_{i j}-x_{i^{\prime} j}\right)^{2}
$$

C_{1}, \cdots, C_{K} : sets containing the indices of the observations in those clusters
$W\left(C_{k}\right):$ within-cluster variations, $k=1, \cdots, K$

HIERARCHICAL CLUSTERING

Complete linkage

Single linkage

Average linkage

Centroid linkage

Calculate all pairwise Euclidean distance between the observations in cluster A and the observations in cluster B, and record the largest of these distances.

Calculate all pairwise Euclidean distance between the observations in cluster A and the observations in cluster B, and record the smallest of these distances. Single linkage can result in trailing clusters, in which single observations are fused one-at-a-time.

Calculate all pairwise Euclidean distance between the observations in cluster A and the observations in cluster B, and record the average of these distances.

Calculate the two centroids and record the Euclidean distance of these two centroids. Centroid linkage can lead to inversions, where two clusters are fused at a height lower than either individual cluster in the dendrogram.

SINGLE LAYER NEURAL NETWORK

Single layer neural network

Activation

Sigmoid activation

ReLU (rectified linear unit)
$f(X)=\beta_{0}+\sum_{k=1}^{K} \beta_{k} g\left(\omega_{k 0}+\sum_{j=1}^{p} \omega_{k j} X_{j}\right)$
$A_{k}=h_{k}(X)=g\left(\omega_{k 0}+\sum_{j=1}^{p} \omega_{k j} X_{j}\right)$
$g(z)=\frac{e^{z}}{1+e^{z}}=\frac{1}{1+e^{-z}}$
$g(z)=(z)_{+}=0, \quad$ if $z<0$ and $=z, \quad$ if $z \geq 0$ activation

MULTILAYER NEURAL NETWORKS

First hidden layer

Second hidden layer

Output layer

Softmax activation

$$
\begin{aligned}
& A_{k}^{(1)}=h_{k}^{(1)}(X)=g\left(\omega_{k 0}^{(1)}+\sum_{j=1}^{p} \omega_{k j}^{(1)} X_{j}\right) \\
& A_{\ell}^{(2)}=h_{\ell}^{(2)}(X)=g\left(\omega_{k 0}^{(2)}+\sum_{k=1}^{K_{1}} \omega_{\ell k}^{(2)} A_{k}^{(1)}\right) \\
& Z_{m}=\beta_{m 0}+\sum_{\ell=1}^{K_{2}} \beta_{m \ell} A_{\ell}^{(2)} \\
& f_{m}(X)=\operatorname{Pr}(Y=m \mid X)=\frac{e^{Z_{m}}}{\sum_{\ell=0}^{9} e^{Z_{\ell}}} \\
& -\sum_{i=1}^{n} \sum_{m=0}^{9} y_{i m} \log \left(f_{m}\left(x_{i}\right)\right) \\
& \log \left(\frac{\operatorname{Pr}(Y=1 \mid X)}{\operatorname{Pr}(Y=0 \mid X)}\right)=Z_{1}-Z_{0}=\left(\beta_{10}-\beta_{00}\right)+\sum_{\ell}^{K_{2}}\left(\beta_{1 \ell}-\beta_{0 \ell}\right) A_{\ell}^{(2)}
\end{aligned}
$$

RECURRENT NEURAL NETWORKS

Hidden Layers
$A_{\ell k}=g\left(\omega_{k 0}+\sum_{j=1}^{p} \omega_{k j} X_{\ell j}+\sum_{s=1}^{K} u_{k s} A_{\ell-s, s}\right)$
Output layer

$$
O_{\ell}=\beta_{0}+\sum_{s=1}^{K} \beta_{k} A_{\ell k}
$$

Sum of squared errors

$$
\sum_{i=1}^{n}\left(y_{i}-o_{i L}\right)^{2}=\sum_{i=1}^{n}\left(y_{i}-\left(\beta_{0}+\sum_{s=1}^{K} \beta_{k} g\left(\omega_{k 0}+\sum_{j=1}^{p} \omega_{k j} X_{i L j}+\sum_{s=1}^{K} u_{k s} a_{i, L-1, s}\right)\right)\right)^{2}
$$

FITTING A NEURAL NETWORK

Fitting a neural network

Reformulation of the objective function

A single term

Gradient of $R(\theta)$ evaluated at $\theta=\theta^{m}$

Gradient descent

The derivative of $R_{i}(\theta)$ with respect to β_{k}

The derivative of $R_{i}(\theta)$ with respect to $\omega_{k j}$

Objective function with a penalty term
$\min _{\left\{\omega_{k}\right\}_{1}^{K}, \beta} \frac{1}{2} \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}$
$R(\theta)=\frac{1}{2} \sum_{i=1}^{n}\left(y_{i}-f_{\theta}\left(x_{i}\right)\right)^{2}$
$R_{i}(\theta)=\frac{1}{2}\left(y_{i}-\beta_{0}-\sum_{k=1}^{K} \beta_{k} g\left(\omega_{k 0}+\sum_{j=1}^{p} \omega_{k j} x_{i j}\right)\right)^{2}$
$\nabla R\left(\theta^{m}\right)=\left.\frac{\partial R(\theta)}{\partial \theta}\right|_{\theta=\theta^{m}}$
$\theta^{m+1} \leftarrow \theta^{m}-\rho \nabla R\left(\theta^{m}\right)$

$$
\frac{\partial R_{i}(\theta)}{\partial \beta_{k}}=\frac{\partial R_{i}(\theta)}{\partial f_{\theta}\left(x_{i}\right)} \frac{\partial f_{\theta}\left(x_{i}\right)}{\partial \beta_{k}}=-\left(y_{i}-f_{\theta}\left(x_{i}\right)\right) \cdot g\left(z_{i k}\right)
$$

$$
\left.\frac{\partial R_{i}(\theta)}{\partial \omega_{k j}}=\frac{\partial R_{i}(\theta)}{\partial f_{\theta}\left(x_{i}\right)} \frac{\partial f_{\theta}\left(x_{i}\right)}{\partial \omega_{k j}}=-\left(y_{i}-f_{\theta}\left(x_{i}\right)\right)\right) \beta_{k} g^{\prime}\left(z_{i k}\right) x_{i j} .
$$

$$
R(\theta ; \lambda)=-\sum_{i=1}^{n} \sum_{m=0}^{9} y_{i m} \log \left(f_{m}\left(x_{i}\right)\right)+\lambda \sum_{j} \theta_{j}^{2}
$$

Part D: Time Series

TREND AND SEASONALITY

Let m_{t} be the trend component, s_{t} be the seasonality component, and z_{t} be the remainder term.

Additive model:

Multiplicative model:

Centered moving average for monthly data:

Monthly additive effect:

Monthly multiplicative effect:

Additive model, seasonally adjusted data:
Multiplicative model, seasonally adjusted data:

$$
\begin{aligned}
& x_{t}=m_{t}+s_{t}+z_{t} \\
& x_{t}=m_{t} s_{t}+z_{t} \\
& \hat{m}_{t}=\frac{0.5 m_{t-6}+\cdots+m_{t-1}+m_{t}+m_{t+1}+\cdots+0.5 m_{t+6}}{12} \\
& \hat{s}_{t}=x_{t}-\hat{m}_{t} \quad \text { We can adjust } \hat{s}_{t} \text { so that they average } 0 . \\
& \hat{s}_{t}=\frac{x_{t}}{\hat{m}_{t}} \quad \text { We can adjust } \hat{s}_{t} \text { so that they average } 1 . \\
& x_{t}-\hat{s}_{t} \\
& \frac{x_{t}}{\hat{s}_{t}}
\end{aligned}
$$

STATIONARITY

Stationary:

 Properties like mean and variance do not depend on the time.Second-order stationary:
Stationary in mean and variance, and autocorrelation is a function only of the lag, not of the time.

Strictly stationary: No moments vary with t .

Time series with trends, or with seasonality, are not stationary.

Time series: $\quad x_{t}$

Mean:
$E\left[x_{t}\right]=\mu(t)$

Variance:

$$
\operatorname{Var}\left(x_{t}\right)=\sigma^{2}(t)=E\left[\left(x_{t}-\mu(t)\right)^{2}\right]
$$

If the series is stationary
$\operatorname{Var}\left(x_{t}\right)=\sigma^{2}$
in the variance:

The sample variance is:

$$
s^{2}=\frac{1}{n-1} \sum_{t=1}^{n}\left(x_{t}-\bar{x}\right)^{2}
$$

AUTOCORRELATIONS

In this section, we assume that the time series x_{t} is second-order stationary.

Autocovariance:

$$
\gamma_{k}=\gamma\left(x_{t+k}, x_{t}\right)=E\left[\left(x_{t+k}-\mu\right)\left(x_{t}-\mu\right)\right]
$$

Autocorrelation:

$$
\rho_{k}=\rho\left(x_{t+k}, x_{t}\right)=\frac{\gamma\left(x_{t+k}, x_{t}\right)}{\sqrt{\operatorname{Var}\left(x_{t+k}\right) \operatorname{Var}\left(x_{t}\right)}}=\frac{\gamma\left(x_{t+k}, x_{t}\right)}{\gamma\left(x_{t}, x_{t}\right)} \quad \operatorname{Var}\left(x_{t+k}\right)=\operatorname{Var}\left(x_{t}\right)
$$

Sample autocovariance:
$c_{k}=c\left(x_{t+k}, x_{t}\right)=\frac{1}{n} \sum_{t=1}^{n-k}\left(x_{t+k}-\bar{x}\right)\left(x_{t}-\bar{x}\right)$
Sample autocorrelation:
$r_{k}=r\left(x_{t+k}, x_{t}\right)=\frac{c\left(x_{t+k}, x_{t}\right)}{\sqrt{c\left(x_{t+k}, x_{t+k}\right) c\left(x_{t}, x_{t}\right)}}=\frac{c\left(x_{t+k}, x_{t}\right)}{c\left(x_{t}, x_{t}\right)} \quad c\left(x_{t+k}, x_{t+k}\right)=c\left(x_{t}, x_{t}\right)$
Note that $c\left(x_{t}, x_{t}\right) \neq s^{2}$.

A correlogram plots the autocorrelation function (ACF):

$$
\begin{array}{lll}
\text { ACF slowly decreases from } 1 & \rightarrow & \text { Sign of trend } \\
\text { ACF shows an oscillation } & \rightarrow & \text { Sign of seasonality }
\end{array}
$$

Cross-covariance:

$$
\gamma_{k}(x, y)=\gamma\left(x_{t+k}, y_{t}\right)=E\left[\left(x_{t+k}-\mu_{x}\right)\left(y_{t}-\mu_{y}\right)\right] \quad x \text { lags } y \text { by } k \text { periods }
$$

Cross-correlation:

$$
\begin{aligned}
\rho_{k}(x, y)=\rho\left(x_{t+k}, y_{t}\right) & =\frac{\gamma\left(x_{t+k}, y_{t}\right)}{\sqrt{\operatorname{Var}\left(x_{t+k}\right) \operatorname{Var}\left(y_{t}\right)}} \quad \operatorname{Var}\left(x_{t+k}\right)=\operatorname{Var}\left(x_{t}\right) \\
& =\frac{\gamma\left(x_{t+k}, y_{t}\right)}{\sqrt{\operatorname{Var}\left(x_{t}\right) \operatorname{Var}\left(y_{t}\right)}}
\end{aligned}
$$

Sample cross-covariance:

$$
c_{k}(x, y)=c\left(x_{t+k}, y_{t}\right)=\frac{1}{n} \sum_{t=1}^{n-k}\left(x_{t+k}-\bar{x}\right)\left(y_{t}-\bar{y}\right)
$$

Sample cross-correlation:

$$
\begin{aligned}
{[t] r_{k}(x, y)=r\left(x_{t+k}, y_{t}\right) } & =\frac{c\left(x_{t+k}, y_{t}\right)}{\sqrt{c\left(x_{t+k}, x_{t+k}\right) c\left(y_{t}, y_{t}\right)}} \quad c\left(x_{t+k}, x_{t+k}\right)=c\left(x_{t}, x_{t}\right) \\
& =\frac{c\left(x_{t+k}, y_{t}\right)}{\sqrt{c\left(x_{t}, x_{t}\right) c\left(y_{t}, y_{t}\right)}}
\end{aligned}
$$

WHITE NOISE

A white noise time series w_{t} is a stationary time series: $\quad w_{t} \stackrel{i i d}{\sim} N\left(0, \sigma_{w}^{2}\right)$

Mean:

$$
E\left[w_{t}\right]=0
$$

Variance:
$\operatorname{Var}\left(w_{t}\right)=\sigma_{w}^{2}$

Autocovariance:
$\gamma\left(w_{t+k}, w_{t}\right)=0 \quad k \geq 1$

Autocorrelation:
$\rho\left(w_{t+k}, w_{t}\right)=0 \quad k \geq 1$

Correlogram:

The ACF is close to 0 for $k \geq 1$.

RANDOM WALK

A random walk is a nonstationary time series:

$$
\begin{aligned}
& x_{1}-\mu=w_{1} \\
& x_{t}-\mu=\left(x_{t-1}-\mu\right)+w_{t} \quad \rightarrow \quad x_{t}=\mu+\left(w_{1}+\cdots+w_{t}\right)
\end{aligned}
$$

Mean: $\quad E\left[x_{t}\right]=\mu$
Variance: $\quad \operatorname{Var}\left(x_{t}\right)=\sigma_{w}^{2} t$

Autocovariance:	$\gamma\left(x_{t+k}, x_{t}\right)=\sigma_{w}^{2} t$
Autocorrelation:	$\rho\left(x_{t+k}, x_{t}\right)=\frac{\gamma\left(x_{t+k}, x_{t}\right)}{\sqrt{\operatorname{Var}\left(x_{t+k}\right) \operatorname{Var}\left(x_{t}\right)}}=\frac{\sigma_{w}^{2} t}{\sqrt{\sigma_{w}^{2}(t+k) \sigma_{w}^{2} t}}=\frac{t}{\sqrt{t(t+k)}}$

Correlogram: The ACF will slowly decrease from 1 to 0 . Note that the difference of a random walk, $y_{t}=x_{t}-x_{t-1}=w_{t}$ is a white noise.

AUTOREGRESSIVE MODELS

$\boldsymbol{A R}(\boldsymbol{p})$ model:
Example of AR models:

Mean:

Correlogram:

The PACF cuts off after lag p.
For an $A R(p)$ model, the PACF at lag p is just α_{p}.

Coefficients of an $A R(p)$ can be estimated by linear regression, regressing the series on itself with various lags.
R estimates the best AR model using maximum likelihood and the AIC.

Backward shift operator for $\boldsymbol{A R}(p)$ model:

Define:

$$
B^{k}\left(x_{t}-\mu\right)=\left(x_{t-k}-\mu\right) \quad B \text { is the backward shift operator. }
$$

We can write:

$$
\alpha_{p}(B)\left(x_{t}-\mu\right)=w_{t} \quad \text { where } \alpha_{p}(B)=1-\alpha_{1} B-\alpha_{2} B^{2}-\cdots-\alpha_{p} B^{p}
$$

Stationary $\boldsymbol{A R}(\boldsymbol{p})$ model: \quad An $A R(p)$ is stationary if the roots of $\alpha_{p}(B)=0$ exceed 1 in absolute value.

For $A R(1)$, the root is greater than 1 in absolute value if: $\quad\left|\alpha_{1}\right|<1$

For $A R(2)$, the roots are greater than 1 in absolute value if:

$$
\begin{aligned}
& \alpha_{2}-\alpha_{1}<1 \\
& \alpha_{2}+\alpha_{1}<1 \\
& \left|\alpha_{2}\right|<1
\end{aligned}
$$

Invertible $\boldsymbol{A R}(\boldsymbol{p})$ model:

We can write: An $A R(p)$ is always invertible.

$$
\begin{aligned}
x_{t}-\mu=\alpha_{p}^{-1}(B) w_{t} \quad \rightarrow \quad & x_{t}-\mu=w_{t}+\psi_{1} w_{t-1}+\cdots+\psi_{\infty} w_{t-\infty} \\
& \text { This is an } M A(\infty) \text { series. }
\end{aligned}
$$

The variance, covariance, etc., of an $A P(p)$ can be derived using the resulting $M A(\infty)$ series.

For details, refer to Stationary $\boldsymbol{M A}(\boldsymbol{q})$ model in section K7.

Stationary $A R(1)$ model:

The $A R(1)$ model is:

$$
x_{t}=\mu+\alpha\left(x_{t-1}-\mu\right)+w_{t} \quad \text { An } A R(1) \text { is stationary if }|\alpha|<1
$$

We have $E\left[x_{t+k}\right]=E\left[x_{t}\right]$ and $\operatorname{Var}\left(x_{t+k}\right)=\operatorname{Var}\left(x_{t}\right)$, and the following:

Mean:
$E\left[x_{t}\right]=\mu+\alpha\left(E\left[x_{t-1}\right]-\mu\right)$
$\rightarrow \quad E\left[x_{t}\right]=\mu$

Variance:
$\operatorname{Var}\left(x_{t}\right)=\alpha^{2} \operatorname{Var}\left(x_{t-1}\right)+\sigma_{w}^{2}$
$\rightarrow \quad \operatorname{Var}\left(x_{t}\right)=\frac{\sigma_{w}^{2}}{1-\alpha^{2}}$
Autocovariance:
$\gamma\left(x_{t+k}, x_{t}\right)=E\left[x_{t} x_{t+k}\right]=\alpha^{k} \operatorname{Var}\left(x_{t}\right) \quad \rightarrow \quad \gamma\left(x_{t+k}, x_{t}\right)=\frac{\alpha^{k} \sigma_{w}^{2}}{1-\alpha^{2}}$
Autocorrelation:
$\rho\left(x_{t+k}, x_{t}\right)=\frac{\alpha^{k} \operatorname{Var}\left(x_{t}\right)}{\sqrt{\operatorname{Var}\left(x_{t+k}\right) \operatorname{Var}\left(x_{t}\right)}} \quad \rightarrow \quad \rho\left(x_{t+k}, x_{t}\right)=\alpha^{k}$
Partial autocorrelation:
$\rho\left(x_{t+k}, x_{t}\right)= \begin{cases}\alpha, & k=1 \\ 0, & k \geq 2\end{cases}$

Correlogram:
The ACF exponentially decays from 1 to 0 .
The PACF cuts off after lag 1.

MOVING AVERAGE MODELS

$M A(q)$ model:
$x_{t}-\mu=w_{t}+\beta_{1} w_{t-1}+\cdots+\beta_{q} w_{t-q}$

Mean:
$E\left[x_{t}\right]=\mu$

Correlogram:

Fitting $M A(q)$ model:
The ACF cuts off after lag q.

R estimates the parameters by minimizing the conditional sum of squared residuals, $\sum w_{t}^{2}$.

Model:
$x_{t+1}=w_{t+1}+\beta_{1} w_{t}+\beta_{2} w_{t-1}+\cdots+\beta_{q} w_{t-q+1}$

Forecast:
$\hat{x}_{t+1 \mid t}=0+\beta_{1} w_{t}+\beta_{2} w_{t-1}+\cdots+\beta_{q} w_{t-q+1}$
Residual:
$\hat{w}_{t+1}=x_{t+1}-\hat{x}_{t+1 \mid t}$
where x_{t+1} is the actual value.

Backward shift operator for $M A(q)$:

Define:

$$
B^{k} w_{t}=w_{t-k}
$$

B is the backward shift operator.

We can write:

$$
x_{t}-\mu=\beta_{q}(B) w_{t}
$$

where $\beta_{q}(B)=1+\beta_{1} B+\cdots+\beta_{q} B^{p}$.

Stationary $M A(q)$ model:

The $M A(q)$ model is:

$$
x_{t}=\mu+w_{t}+\beta_{1} w_{t-1}+\cdots+\beta_{q} w_{t-q}
$$

An $M A(q)$ is always stationary.

We have $E\left[x_{t+k}\right]=E\left[x_{t}\right]$ and $\operatorname{Var}\left(x_{t+k}\right)=\operatorname{Var}\left(x_{t}\right)$, and the following:
Mean:

$$
E\left[x_{t}\right]=\mu
$$

Variance:

$$
\operatorname{Var}\left(x_{t}\right)=\sigma_{w}^{2}\left(\beta_{0}+\beta_{1}^{2}+\cdots+\beta_{q}^{2}\right) \quad \beta_{0}=1
$$

Autocovariance:

$$
\gamma\left(x_{t+k}, x_{t}\right)=\sigma_{w}^{2}\left(\beta_{0} \beta_{k}+\beta_{1} \beta_{1+k}+\cdots+\beta_{q-k} \beta_{q}\right)
$$

Autocorrelation:

$$
\rho\left(x_{t+k}, x_{t}\right)=\frac{\beta_{0} \beta_{k}+\beta_{1} \beta_{1+k}+\cdots+\beta_{q-k} \beta_{q}}{\beta_{0}+\beta_{1}^{2}+\cdots+\beta_{q}^{2}} \quad \rho_{k}=0 \text { if } k>q
$$

Correlogram:

$$
\text { The ACF cuts off after lag } q \text {. }
$$

Invertible $M A(q)$ model:

We can write:

$$
\beta_{q}^{-1}(B)\left(x_{t}-\mu\right)=w_{t} \quad \rightarrow \quad\left(x_{t}-\mu\right)+\phi_{1}\left(w_{t-1}-\mu\right)+\cdots+\phi_{\infty}\left(x_{t-\infty}-\mu\right)=w_{t}
$$

This is an $A R(\infty)$ series.

For $M A(1)$, the root is greater than 1 in absolute value if: $\quad\left|\beta_{1}\right|<1$
For $M A(2)$, the roots are greater than 1 in absolute value if:

$$
\begin{aligned}
& -\beta_{2}+\beta_{1}<1 \\
& -\beta_{2}-\beta_{1}<1 \\
& \left|\beta_{2}\right|<1
\end{aligned}
$$

ARMA MODELS

ARM $A(p, q)$ model:

$$
x_{t}-\mu=\alpha_{1}\left(x_{t-1}-\mu\right)+\alpha_{2}\left(x_{t-2}-\mu\right)+\cdots+\alpha_{p}\left(x_{t-p}-\mu\right)+w_{t}+\beta_{1} w_{t-1}+\cdots+\beta_{q} w_{t-q}
$$

Backward shift operator for $\operatorname{ARMA}(p, q)$:

We can write:

$$
\alpha_{p}(B) x_{t}=\beta_{q}(B) w_{t}
$$

We may invert:

$$
\begin{array}{ll}
x_{t}-\mu=\alpha_{p}^{-1}(B) \beta_{q}(B) w_{t} & \text { This is an } M A(\infty) \text { series. } \\
\beta_{q}^{-1}(B) \alpha_{p}(B)\left(x_{t}-\mu\right)=w_{t} & \text { This is an } A R(\infty) \text { series }
\end{array}
$$

Stationary \& Invertible $\boldsymbol{A R M A}(\boldsymbol{p}, \boldsymbol{q})$ model:

An $A R M A(p, q)$ is stationary if the roots of $\alpha_{p}(B)=0$ exceed 1 in absolute value.

An $A R M A(p, q)$ is invertible if the roots of $\beta_{q}(B)=0$ exceed 1 in absolute value.

We can write:

$$
x_{t}-\mu=\alpha_{p}^{-1}(B) \beta_{q}(B) w_{t} \quad \rightarrow \quad x_{t}-\mu=w_{t}+\psi_{1} w_{t-1}+\cdots+\psi_{\infty} w_{t-\infty}
$$

This is an $M A(\infty)$ series.

The variance, covariance, etc., of an $A R M A(p, q)$ can be derived using the resulting $M A(\infty)$ series.

For details, refer to Stationary $\boldsymbol{M A}(\boldsymbol{q})$ model in section K7.

Simplifying $A R M A(p, q)$ model:

If an $A R M A(p, q)$ has redundant parameters, we can simplify the model by cancelling common factors.

Stationary $A R M A(1,1)$ model:

The $\operatorname{ARMA}(1,1)$ model is: $\quad x_{t}-\mu=\alpha\left(x_{t-1}-\mu\right)+w_{t}+\beta w_{t-1}$
An $\operatorname{ARMA}(1,1)$ is stationary if $|\alpha|<1$.
We have $E\left[x_{t+k}\right]=E\left[x_{t}\right]$ and $\operatorname{Var}\left(x_{t+k}\right)=\operatorname{Var}\left(x_{t}\right)$, and the following:

Mean:

$$
E\left[x_{t}\right]=\mu
$$

Variance:

Autocovariance:

Autocorrelation:

$$
\rho\left(x_{t+k}, x_{t}\right)=\frac{\alpha^{k-1}(\alpha+\beta)(1+\alpha \beta)}{1+2 \alpha \beta+\beta^{2}}
$$

It's hard to derive this.
You may just memorize the formula.

Note that:
$\rho_{k}=\alpha \rho_{k-1}$

$$
\rightarrow \quad \rho_{k}=\alpha^{k-1} \rho_{1}
$$

ARIMA AND SARIMA MODELS

ARIMA $(\boldsymbol{p}, \boldsymbol{d}, \boldsymbol{q})$ model:

$$
\begin{aligned}
& \alpha_{p}(B)(1-B)^{d}\left(x_{t}-\mu\right)=\beta_{q}(B) w_{t} \\
& \alpha_{P}\left(B^{s}\right) \alpha_{p}(B)\left(1-B^{s}\right)^{D}(1-B)^{d}\left(x_{t}-\mu\right)=\beta_{Q}\left(B^{s}\right) \beta_{q}(B) w_{t} \\
& \text { Note that: }(1-B)^{2} x_{t}=\left(x_{t}-x_{t-1}\right)-\left(x_{t-1}-x_{t-2}\right) \\
& \text { But: } \quad\left(1-B^{2}\right) x_{t}=x_{t}-x_{t-2}
\end{aligned}
$$

FORECASTING

n-step ahead forecast:

$$
\hat{x}_{t+n \mid t}=E\left[x_{t+n} \mid x_{t}, x_{t-1}, \ldots, x_{0}\right]
$$

The concepts and formulas in the following example can be generalized for other AR, MA, ARMA, ARIMA and SARIMA models.

Example (Forecasting an ARMA model with $\mu=0$):

Model: $\quad x_{t+1}=\alpha_{1} x_{t}+\alpha_{2} x_{t-1}+\alpha_{3} x_{t-2}+\cdots+\alpha_{p} x_{t-p+1}+w_{t+1}+\beta_{1} w_{t}+\beta_{2} w_{t-1}+\cdots+\beta_{q} w_{t-q+1}$
1-step ahead forecast: $\hat{x}_{t+1 \mid t}=\alpha_{1} x_{t}+\alpha_{2} x_{t-1}+\alpha_{3} x_{t-2}+\cdots+\alpha_{p} x_{t-p+1}+0+\beta_{1} w_{t}+\beta_{2} w_{t-1}+\cdots+\beta_{q} w_{t-q+1}$

Model: $\quad x_{t+2}=\alpha_{1} x_{t+1}+\alpha_{2} x_{t}+\alpha_{3} x_{t-1}+\cdots+\alpha_{p} x_{t-p+2}+w_{t+2}+\beta_{1} w_{t+1}+\beta_{2} w_{t}+\beta_{3} w_{t-1}+\cdots+\beta_{q} w_{t-q+2}$

2-step ahead forecast: $\hat{x}_{t+2 \mid t}=\alpha_{1} \hat{x}_{t+1 \mid t}+\alpha_{2} x_{t}+\alpha_{3} x_{t-1}+\cdots+\alpha_{p} x_{t-p+2}+0+0+\beta_{2} w_{t}+\beta_{3} w_{t-1}+\cdots+\beta_{q} w_{t-q+2}$

Model

$$
x_{t+3}=\alpha_{1} x_{t+2}+\alpha_{2} x_{t+1}+\alpha_{3} x_{t}+\cdots+\alpha_{p} x_{t-p+3}+w_{t+3}+\beta_{1} w_{t+2}+\beta_{2} w_{t+1}+\beta_{3} w_{t}+\cdots+\beta_{q} w_{t-q+3}
$$

3-step ahead forecast: $\hat{x}_{t+3 \mid t}=\alpha_{1} \hat{x}_{t+2 \mid t}+\alpha_{2} \hat{x}_{t+1 \mid t}+\alpha_{3} x_{t}+\cdots+\alpha_{p} x_{t-p+3}+0+0+0+\beta_{3} w_{t}+\cdots+\beta_{q} w_{t-q+3}$

And so on...

Example (3-step ahead forecast standard error):

We can write:

$$
x_{t}=\alpha_{p}^{-1}(B) \beta_{q}(B) w_{t}
$$

$$
\rightarrow \quad x_{t}=w_{t}+\psi_{1} w_{t-1}+\cdots+\psi_{\infty} w_{t-\infty}
$$

This is an $M A(\infty)$ series.

Model:

$$
x_{t+3}=w_{t+3}+\psi_{1} w_{t+2}+\psi_{2} w_{t+1}+\psi_{3} w_{t}+\psi_{4} w_{t-1}+\cdots
$$

Forecast: $\quad \hat{x}_{t+3 \mid t}=0+0+0+\psi_{3} w_{t}+\psi_{4} w_{t-1}+\cdots$
Forecast error:

$$
x_{t+3}-\hat{x}_{t+3 \mid t}=w_{t+3}+\psi_{1} w_{t+2}+\psi_{2} w_{t+1} \quad \rightarrow \quad \operatorname{Var}\left(x_{t+3}-\hat{x}_{t+3 \mid t}\right)=\left(1+\psi_{1}^{2}+\psi_{2}^{2}\right) \sigma_{w}^{2}
$$

$$
S E\left(x_{t+3}-\hat{x}_{t+3 \mid t}\right)=\sqrt{\left(1+\psi_{1}^{2}+\psi_{2}^{2}\right) \sigma_{w}^{2}}
$$

CAS calls this forecast standard error.
95% PI for $x_{t+3}: \quad \hat{x}_{t+3 \mid t}+1.96 \sqrt{\left(1+\psi_{1}^{2}+\psi_{2}^{2}\right) \sigma_{w}^{2}}$

TIME SERIES REGRESSION

Differencing:

Example of time series with stochastic trend:

Example of time series with deterministic trend:

$$
\begin{array}{ll}
x_{t}=\alpha x_{t-1}+w_{t} & \text { which is an } A R(1) . \\
x_{t}=\alpha_{0}+\alpha_{1} t+z_{t} & \text { which depends on } t .
\end{array}
$$

For example:

$$
x_{t}=\alpha+\beta t+w_{t}
$$

is not stationary.

But:

$$
x_{t}-x_{t-1}=\beta+w_{t}-w_{t-1}
$$ is stationary.

Correcting for autocorrelations:

Suppose for a series $x_{1} \ldots x_{n}$ with variance σ^{2} for each term.

The autocorrelation is:

$$
\rho\left(x_{t+k}, x_{t}\right)=\rho_{k}
$$

The variance of sample mean is: $\operatorname{Var}(\bar{x})=\frac{\sigma^{2}}{n}\left(1+\sum_{k=1}^{n-1} 2\left(1-\frac{k}{n}\right) \rho_{k}\right)$
The residuals of a linear model are often correlated. In the presence of autocorrelation, the standard errors of coefficients of a regression are unreliable.

To correct for autocorrelation, use Generalized Least Squares:

1. Run a linear model, plot the ACF of residuals. Are the autocorrelations significant?
2. Use the autocorrelations from the ACF plot as input to GLS.
3. Run GLS using ML, and obtain GLS coefficient estimates.

Seasonality:
$x_{t}=m_{t}+s_{t}+z_{t} \quad \rightarrow \quad$ Trend m_{t} is usually continuous.
$\rightarrow \quad$ Seasonality s_{t} is usually categorical/indicator.

Harmonic seasonal model:
$x_{t}=m_{t}+\sum_{i=1}^{[s / 2]} s_{i} \sin \left(2 \pi \frac{i t}{s}\right)+c_{i} \cos \left(2 \pi \frac{i t}{s}\right)+z_{t} \quad$ Here, $\pi=180$.
Logarithmic transformations:
For multiplicative model:

We can apply logarithm:

$$
x_{t}=e^{\alpha+\beta t+z_{t}}
$$

$$
y_{t}=\log x_{t}=\alpha+\beta t+z_{t}
$$

$e^{\frac{\sigma^{2}}{2}}$ $\frac{1}{n} \sum_{t=1}^{n} e^{\hat{\varepsilon}_{i}}$
where $z_{t} \sim N\left(0, \sigma^{2}\right)$.

This is a linear model.
σ^{2} can be estimated by the $s^{2}=\mathrm{MSE}=\frac{\sum \hat{\varepsilon}_{i}^{2}}{n-p}$.
where $\hat{\varepsilon}_{i}=x_{i}-\hat{x}_{i}$ are the residuals.

Forecast: $\quad \hat{x}_{t}=e^{\hat{y}_{t}} \times$ Forecast Correction Factor

