Werner \& Modlin 1: "Introduction"

in Basic Ratemaking, 2016, pp. 1-12

DEFINITIONS

Exposure
Written Exposure
Earned Exposure
Unearned Exposure
In-force Exposure
Premium

Claim

Loss
Case Reserve
IBNR (or IBNYR)

IBNER

LAE
ALAE

ULAE

Uw Expenses

A basic unit used to quantify risk
The exposures that arise during a period of time due to policies being issued
The portion of written exposures for which coverage has already been provided
The portion of written exposures for which coverage has not yet been provided
The insured units at a particular point in time that are exposed to loss
The amount the insured pays for insurance coverage
The demand made by the insured to the insurer for indemnification for an event covered by the policy

The amount paid or payable to the insured under the insurance policy
An estimate of the amount of money required to ultimately settle a claim
Incurred But Not (Yet) Reported - the amount estimated to ultimately settle unreported claims

Incurred But Not Enough Reported - the amount estimated to ultimately settle reported claims

Loss Adjustment Expense - expenses incurred during the claims settling process
Allocated Loss Adjustment Expense - expenses incurred during the claims settling process that can be attributed to a specific claim

Unallocated Loss Adjustment Expense - expenses incurred during the claims settling process that cannot be attributed to a specific claim (eg. office building expenses)

Underwriting Expenses - expenses incurred for acquisition and servicing of policies, including commisions and brokerage, other acquisition expenses, general expenses, and taxes, licences and fees

FORMULAS

Frequency

Severity

Pure Premium

Average Premium

$$
\begin{aligned}
& \frac{\text { Number of Claims }}{\text { Number of Exposures }} \\
& \frac{\text { Losses }}{\text { Number of Claims }} \\
& \frac{\text { Losses }}{\text { Number of exposures }}=\text { Frequency } \times \text { Severity } \\
& \frac{\text { Total Premium }}{\text { Number of Exposures }}
\end{aligned}
$$

Loss Ratio

LAE Ratio

UW Expense Ratio

Operating Expense Ratio

Combined Ratio

Retention Ratio

Hit Ratio (Close Ratio)
$\frac{\text { Losses }}{\text { Premium }}=\frac{\text { Pure Premium }}{\text { Average Premium }}$
$\underline{\text { Loss Adjustment Expenses }}$
Losses
UW Expenses
Premium
UW Expense Ratio $+\frac{\text { LAE }}{\text { Earned Premium }}$
Loss Ratio $+\frac{\text { LAE }}{\text { Earned Premium }}+\frac{\text { Underwriting Expenses }}{\text { Written Premium }}$
Number of Policies Renewed
Number of Potential Renewals
Number of Accepted Quotes
Number of Quotes Written

Werner \& Modlin 3: "Ratemaking Data"

in Basic Ratemaking, 2016, pp. 36-48

DEFINITIONS

Policy Database
Claims Database
Policy identifier / number
Risk identifier
Risk Characteristics
Calendar Year

Accident Year
Policy/Underwriting Year
Report Year
Statistical plans
Competitor Filings / Manuals

A database that contains the information about policies
A database that contains the information about claims
A unique number assigned to the policy
A unique identifier used to identify specific risks
Descriptive of the policy and the risk
It refers to when a transaction occurs or is incurred with no regard to the dates of the events

It only consider losses for accidents that occur during that time period the calendar year (CY) during which the policy was sold

The year in which the losses were reported
The standardized formats used in the insurance industry to submit data to regulators
The documents submitted by insurance companies to regulatory authorities

FORMULAS

Incurred Losses

Case Reserves

Paid Losses + Case Reserves
Ending Loss Reserve - Beginning Loss Reserve

Werner \& Modlin 4: "Exposures"

in Basic Ratemaking, 2016, pp. 49-63

DEFINITIONS

Base rates
Exposure units
Composite rating

Exposure Aggregation
Policy Terms
Exposure Blocks

The rate for the base cell
The risk associated with a certain insurance type
A type of prospective rating plans where the underwriter adjusts future premiums based on exposures

The total exposures within a particular time frame
The duration for which the policy is active
The exposure of group of insurance policies where the policy information is consolidated and summarized at a monthly or quarterly frequency.

FORMULAS

Written Exposures (PY)	Earned Exposures + Unearned Exposures
Written Exposures (CY)	Earned Exposures + Ending Unearned Exposures - Beginning Unearned Exposures

Werner \& Modlin 5: "Premium"

in Basic Ratemaking, 2016, pp. 64-89

DEFINITIONS

Calendar Year Aggregation
 Accident Year Aggregation

Blocks of Policies

Extension of Exposures

Parallelogram Method

Exposure trend

Premium Trend
One-Step Trending

Considers all premium transactions that occur during a calendar year.
Considers all premium transactions that occur during the year that an accident occured.
an insurer's underwritten insurance policies that have the same terms and characteristics.

Calculating the earned premium at current rates by recalculating previous years' premium using new rates

Used for adjusting earned premium since premiums may change from year to year. It achieves this by assuming that earned premium at each rate level flows in uniformly throughout the year, as it would if the volume of business did not grow or shrink.

The adjustments made to historical exposures so that they are at levels expected in the future

The change in average premium level resulting from distributional changes
Premium trend is selected based on historical data using linear or exponential trend

FORMULAS

CY Unearned Premium
On-level Factor
Current Premium
Trend Factor
Total Premium Trend Factor
Calendar Year Projected Earned Premium
\section*{Unearned Premium}
Unearned Premium $=$ Written Premium - Earned Premium
CY Written Premium - CY Earned Premium + Unearned Premium at the Beginning of the CY
Current Rate Level
$\overline{\text { Rate Level of Historical Period }}$
Latest Average WP at Current Rate Level
Historical Average EP at Current Rate Level
Current Year Premium Trend Factor + Projected Trend Factor
CYEP at Current Rates \times Current Trend Factor \times Projected Trend Factor - expected to continue

Werner \& Modlin 6: "Losses and LAE"

 in Basic Ratemaking, 2016, pp. 90-124
DEFINITIONS

Large Losses / Shock Losses
Catastrophe Losses
Reinsurance
Proportional Reinsurance

High severity, low frequency event for individual policy High severity, low frequency event for gourp of policies

Insurance for insurance companies
premiums and losses are shared proportionally between the primary insurer and the reinsurer

Non-proportional Reinsurance
Chain-Ladder Method

Link ratios
Salvage
Subrogation
Basic Limit Losses
Excess Losses
DCC
AAO
A predefined portion of losses are reinsured for a portion of the premium
A method of calculating future reserves purely based in past payments, ignoring the loss ratio

Age-to-Age development factors
Recovery to the insurance company from disposal of damaged property
Recovery from another insurer whose insured was liable
losses right censored at a pre-defined limit
left truncated loss amount above the basic limit
Costs the company incurs from defending claims
All other LAE not included in DCC

FORMULAS

Total Loss

Excess Trend

Basic limit Loss + Excess Loss
$\frac{(\text { Loss })(1+\text { Overall Trend })-\text { Limit }}{\text { Loss }- \text { Limit }}$

Werner \& Modlin 7: "Other Expenses and Profit"

in Basic Ratemaking, 2016, pp. 125-140

DEFINITIONS

Underwriting Expense
All-Variable Expense Method

Premium Based Projection
Method
Exposure/Policy-Based
Projection Method

Variable Expenses

Fixed Expenses

Permissible Loss Ratio

Costs associated with acquiring and servicing insurance contracts
A method for calculating expense provision where all expenses are treated as variable expenses

A method for calculating expense provision that looks at fixed and variable expenses separately

A method that treats variable expenses like the Premium-Based Method but allocates fixed expenses by number of policies rather than premium size, resulting in an average cost per policy.

Vary with premium over time, so as premium changes, the variable expenses do as well since they're a percentage of premium

Constant dollar amount but the expectation is that they will increase due to inflationary forces

Loss ratio that will produce expected target profit given the expense assumptions

FORMULAS

Premium	Losses + LAE + Underwriting Expenses + Underwriting Profit
	$L+E_{L}+\left(E_{F}+V \times P\right)+\left(Q_{T} \times P\right)$ where UW Expenses $=\left(E_{F}+V \times P\right)$
$\left(L+E_{L}+E_{F}\right) \div\left(1-V-Q_{T}\right)$	
Total Profit	Investment Income + Underwriting Profit
UW Profit	Premium - Losses - LAE - UW Expenses
VPLR	$1-$ Variable Expense $\%-$ Target Profit $\%$
	$1-V-Q_{T}$
PLR	$1-$ Total Expense $\%-$ Target Profit $\%$
	$1-(F+V)-Q_{T}$

Werner \& Modlin 8: "Overall Indication"

in Basic Ratemaking, 2016, pp. 141-149

FORMULAS

Indicated Average Rate

Average indicated premium

Indicated Change Factor

Indicated Change
$\frac{\text { Pure Premium (Including LAE) }+ \text { Fixed UW Expense per Exposure }}{1-\text { Variable Expense Ratio - Target Profit Percentage }}$
$\bar{P}_{I}=\frac{\overline{L+E_{L}}+\bar{E}_{F}}{1-V-Q_{T}}$
$\frac{\text { Loss \&LAE Ratio + Fixed Expense Ratio }}{1-\text { Variable Expense Ratio - Target UW Profit } \%}=\frac{\left(L+E_{L}\right) / P_{C}+F}{1-V-Q_{T}}$
$\frac{\left(L+E_{L}\right) / P_{C}+F}{1-V-Q_{T}}-1$

Werner \& Modlin 9: "Traditional Risk Classification"

in Basic Ratemaking, 2016, pp. 150-169

DEFINITIONS

Classification Ratemaking

Adverse Selection

Favorable Selection

A process of establishing insurance rates by categorizing similar risks together and applying the same rate to everyone in a particular group.

The likelihood of persons with high-risk profiles to buy insurance products due to information asymmetry

The selection of insureds based on data that reveals a tendency for use of the insurance product in that population group to be lower than expected or estimated

FORMULAS

Indicated rate differential for level I	$R 1_{I, i}=\frac{\left[\overline{L+E_{L}}\right]_{i}}{\left[\overline{L+E_{L}}\right]_{B}}$
Indicated Differential Change	$\frac{R 1_{I, i}}{R 1_{C, i}}=\frac{\text { Loss \&LAE Ratio for i }}{\text { Loss \&LAE Ratio for B }}$

Werner \& Modlin 10: "Multivariate Classification"

in Basic Ratemaking, 2016, pp. 170-187

DEFINITIONS

Bias Function

Sequential Analysis

Generalized Linear Models

Linear Model

Standard Errors

Deviance
Model Validation Techniques

Data Mining Techniques
Factor Analysis

Compares observations against indicated values
Indicated relativities calculated on the first variable and exposures are then adjusted before calculating the indicated relativity on the second variable...then repeating for all subsequent variables

Use a variety of distributions outside normal and allow for more complex relationships between the predictors and responses

A statistical method used to model the linear relationship between the response variable Y and a set of explanatory variables $X_{1}, X_{2}, \ldots, X_{p}$

An indicator of the speed with which the log-likelihood falls from the maximum given a change in parameter

Measure of how a fitted value varies from the observations
Assessing the performance and accuracy of a model by testing it on a separate data set, known as the test data

Extract relevant information from big data sets
The technique used to reduce the number of parameter estimates in classification analysis.

Cluster Analysis

CART

MARS

Neural Networks

The technique where observations are grouped into similar homogeneous groups or clusters

Create decision trees that forecast the value of a response variable based on a set of predictor variables

Used to predict the values of continuous response variables using a collection of predictors

Extracts linear combinations of inputs as derived features and models the response as a nonlinear function of the derived features

FORMULAS

Linear Model Equations

$Y=\mu+\varepsilon$
$Y=\left(\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}+\beta_{4} X_{4}\right)+\varepsilon$

Werner \& Modlin 11: "Special Classification"

in Basic Ratemaking, 2016, pp. 188-215

DEFINITIONS

Territorial Ratemaking

Geographic Residual Variation Systematic variation not captured by the geographic variables

Geographic Signal

Smoothing

Spatial Smoothing
Increased Limits Ratemaking
Basic Limit

Increased Limits
Single Limit
Compound Limits
Loss Elimination Ratio (LER)
Insured To Value
Coinsurance Clause

The method employed by insurers to calculate insurance rates by taking into account the geographical location of the policyholder

Composite risk index or score from various geographic predictors including that for geographic residual variation

A method used to remove noise from a dataset, while preserving significant patterns in the data.

Improve estimates using information from surrounding areas
A method employed to determine charges for projected losses at higher levels of liability
Lowest coverage level offered
Higher levels of coverage offered
Defined amount of coverage per claim
Two or more limits on a claim
Losses eliminated divided by the total losses
risk is insured for the full value/replacement cost
A restriction to benefits for the insured in the primary dwelling coverage of a homeowners insurance policy

FORMULAS

Standard ILF Approach
Simplified Approach
Limited Average Severity

Increased Limit Factor

Indicated Deductible Relativity

Loss Elimination Ratio Approach

Empirical Distribution

Fitted Data Approach

Varying Rates
Based on ITV Level

Indicated $\operatorname{ILF}(H)=\frac{\left[\overline{L+E_{L}}\right]_{H}}{\left[\overline{L+E_{L}}\right]_{B}}$
Indicated $\operatorname{ILF}(\mathrm{H})=\frac{L A S(H)}{L A S(B)}$
$L A S(H)=\int_{0}^{H} x f(x) d x+H \int_{H}^{\infty} f(x) d x$
$\operatorname{ILF}(H)=\frac{\int_{0}^{H} x f(x) d x+H \int_{H}^{\infty} f(x) d x}{\int_{0}^{B} x f(x) d x+B \int_{B}^{\infty} f(x) d x}$
$D=\frac{\left[\overline{L+E_{L}}\right]_{D}}{\left[\overline{L+E_{L}}\right]_{B}}=1-L E R(D)$
$L E R(D)=\frac{\text { Losses and LAE Eliminated by Deductible }}{\text { Total Ground-up Losses and LAE }}$
$=\frac{\left(L+E_{L}\right)_{B}-\left(L+E_{L}\right)_{D}}{\left(L+E_{L}\right)_{B}}$
$L E R(D)=1-\underline{\sum_{\text {All Losses }} \operatorname{Maximum}[0, \text { Loss Amount }-D]}$
$L E R(D)=1-\frac{\text { All Losses }}{\sum_{\text {All Losses }} \text { Loss Amount }}$
$L E R(D)=\frac{\int_{0}^{D} x f(x) d x+D \int_{D}^{\infty} f(x) d x}{\int_{0}^{\infty} x f(x) d x}$
Discrete Rate $=\frac{f\left[\sum_{L=1}^{F} L s(L)+F\left(1-\sum_{L=1}^{F} s(L)\right)\right]}{F}$
Continuous Rate $=\frac{f\left[\int_{0}^{F} L s(L) d L+F\left(1-\int_{0}^{F} s(L) d L\right)\right]}{F}$

Werner \& Modlin 12: "Credibility"

in Basic Ratemaking, 2016, pp. 216-238

DEFINITIONS

Law of Large Numbers

Credibility
Classical Credibility
Bühlmann Credibility
Bayesian Analysis

The number of observations increases, the difference between the observed relative frequency of an event and the true underlying probability tends to zero

How much confidence or weight is given to actual data for its predictive value
Limit random fluctuations' effect to the risk estimate
Minimize square of error between estimate and true expected value
It involves making an initial, or prior, estimate of a quantity, and then updating that estimate after new sample information becomes available

First Dollar Ratemaking

Excess Loss Ratemaking

Ratemaking on products that cover losses from the first dollar of loss up to a specified limit

Ratemaking on products that cover losses that exceed a high attachment point

FORMULAS

Classical Credibility
Square Root Rule
Bühlmann Credibility
Larger Group Rate
Complement
Harwayne's Method
Complement
Pure Premium

Loss Ratio

Increased Limits Analysis

Lower Limits Analysis

Limits Analysis

Fitted Curve

Werner \& Modlin 13: "Other Considerations"

in Basic Ratemaking, 2016, pp. 239-262

DEFINITIONS

Close Ratio

Retention Ratio
Lifetime Value Analysis
Cumulative Persistency

Adjusted Profit
Hard Market
Soft Market

Estimate $=Z \times$ Observed Estimate $+(1-Z) \times$ Related Experience
$Z=\sqrt{Y / E[Y]}$
Estimate $=Z \times$ Observed Experience $+(1-Z) \times$ Prior Mean where $Z=\frac{N}{N+K}$
(Current Loss Cost of Subject Experience)(Large Group Indicated Loss Cost)
Larger Group Current Average Loss Cost
$\frac{\hat{L}_{1, B} \times X_{1, B}+\hat{L}_{1, C} \times X_{1, C}}{X_{1, B}+X_{1, C}}$
$C=$ Present Rate \times Loss Trend Factor $\times \frac{\text { Prior Indicated Loss Cost }}{\text { Loss Cost Implemented with Last Review }}$
$C=\frac{\text { Loss Trend Factor } \times \text { Prior Indicated Loss Cost }}{\text { Premium Trend Factor } \times \text { Loss Cost Implemented with Last Review }}$
$L_{A} \times\left(\frac{I L F_{A+L}-I L F_{A}}{I L F_{A}}\right)=L_{A} \times\left(\frac{I L F_{A+L}}{I L F_{A}}-1\right)$
$L_{d} \times\left(\frac{I L F_{A+L}-I L F_{A}}{I L F_{d}}\right)$
$L R \times \sum_{d \geq A} P_{d} \times \frac{I L F_{\min (d, A+L)}-I L F_{A}}{I L F_{d}}$
\%Losses in Layer $(\mathrm{A}, \mathrm{A}+\mathrm{L})=\frac{\int_{A}^{A+L}(x-A) f(x) d x+\int_{A+L}^{\infty} L f(x) d x}{\int_{-\infty}^{+\infty} x f(x) d x}$

A measure of the rate at which quoted business purchase a new policy
A measure of which existing business renews their policy
Improves standard ratemaking by considering longer term profitability of an insured Probability that the insured will continually renew their policy up to a certain point in time

Profit adjusted to reflect cumulative persistency
Defined by high price levels and increased profitability
Defined by lower profitability

Werner \& Modlin 14: "Implementation"

in Basic Ratemaking, 2016, pp. 263-288

DEFINITIONS

Variable Premium
Flat (Additive) Premium
Seed Base Rate
Minimum Premiums
Premium Transition Rule

Portion of total premium that varies by risk characteristic
Portion of total premium
Proposed base rate's initial approximation
Cover fixed expenses plus minimum expected loss
Rule limiting the maximum/minimum premium change an insured receives at renewal

FORMULAS

Proposed Additive Fee

Proposed Base Rate

Extension of Exposures

Average Rate Differential

Minimum Premium Effect
Base Rate Adjustment
Differential Adjustment
$A_{P}=\frac{\bar{E}_{F}}{1-V-Q_{T}}$
$B_{P}=\frac{B_{C} \bar{P}_{P}}{\bar{P}_{C}}$ (no additive premiums) $\quad \frac{\left(B_{C}\right)\left(\bar{P}_{P}-A_{P}\right)}{\bar{P}_{C}-A_{C}}$ (with additive premiums)
Proposed Base Rate $=B_{P}=\frac{\left(B_{S}\right)\left(\bar{P}_{P}-A_{P}\right)}{\bar{P}_{S}-A_{P}}$
Proposed Base Rate $=B_{P}=\frac{B_{S} \bar{P}_{P}^{S}}{\bar{P}_{S}}$
Proposed Premium $=\bar{P}_{P}=(1+\Delta \%) \bar{P}_{C}$ (Loss Ratio Method)
Proposed Base Rate $=B_{P}=\frac{\bar{P}_{P}-A_{P}}{\bar{S}_{P}}$
$\%$ Change in Base Rate $=\Delta_{B} \%=\frac{(1+\Delta \%) \bar{P}_{C}-A_{P}}{\bar{P}_{C}-A_{C}} \times \frac{1}{1+\Delta_{s} \%}-1$
Overall change $=1+\Delta_{S} \% \approx \prod_{w}\left(1+\Delta_{S, w} \%\right)$
$1+\Delta_{S, R 1} \%=\frac{\sum_{w}\left(R 1_{P, i} / R 1_{C, i}\right)\left(P_{C, i}-A_{C}\right)}{\bar{P}_{C}-A_{C}}$
Average change for rating variable R1 $=1+\Delta_{S, R 1} \% \approx \frac{\bar{R} 1_{P}}{\bar{R} 1_{C}}$
Proposed average differential for $\mathrm{R} 1=\bar{R} 1_{P}=\frac{\sum_{i}\left(R 1_{P, i}\right)\left(X_{i}\right)}{X}$
Current average differential for $\mathrm{R} 1=\overline{\mathrm{R}} 1_{C}=\frac{\sum_{i}\left(R 1_{C, i}\right)\left(X_{i}\right)}{X}$
Approximated change for additive discounts D1 and D2
$=1+\Delta_{S,(1-D 1-D 2)} \% \approx \frac{1-\bar{D} 1_{P}-\bar{D} 2_{P}}{1-\bar{D} 1_{C}-\bar{D} 2_{C}}$
$\frac{\text { Premium With Minimum }}{\text { Premium Without Minimum }}-1$
$B R A=1+\frac{\text { Premium Shortfall }}{\text { Premium from Noncapped Levels }}$
$D A=\left(1+\frac{1+\text { Cap Percentage }}{(\text { Off-Balance Factor)(1+Selected Overall Change) })}\right) \times\left(\frac{1}{\text { BRA }}\right)$

Werner \& Modlin 15: "Commercial Lines Rating Mechanisms"
 in Basic Ratemaking, 2016, pp. 289-311

DEFINITIONS

Expected Loss Rate
Actual Experience Ratio
Expected Experience Ratio
Composite Rating

Risk Margin

Insurance Charge
Insurance Savings

Expected loss costs reflected in the manual rates
Measure of actual loss experience to expected loss experience
Complement of the company's loss costs
A type of prospective rating plans where the underwriter adjusts future premiums based on exposures

Increased uncertainty of losses above a large deductible should demand a higher risk margin

Cost of limiting retro premium with a maximum
Savings of limiting retro premium with a minimum

FORMULAS

Experience Modification Factor (generic)	$M=\frac{Z_{p} A_{p}+\left(1-Z_{p}\right) E_{p}+Z_{e} A_{e}+\left(1-Z_{e}\right) E_{e}}{E}$
Experience Modification Factor (NCCI)	$M=\frac{A_{p}+w A_{e}+(1-w) E_{e}+B}{E+B}$
Retro Premium	[Basic Premium + Converted Losses] \times Tax Multiplier
Trended Composite Exposure	Composite Exp. \times Exp. Trend Factor
Adjusted Premium	$\frac{\text { Trended Ultimate Loss\&ALAE }}{\text { Expected Loss\&ALAE Ratio }}$
Composite Rate	$\frac{\text { Adjusted Premium }}{\text { Trended Composite Exposure }}$
Large Deductible Premium	Losses Above Deductible + ALAE + Fixed Expense + Credit Risk + Risk Margin
Retro Premium	[Basic Premium + Converted Losses $] \times$ Tax Multiplier
Basic Premium	[Expense Allowance - Expense $-L C F+$ Net Insurance Charge] \times Standard Premium
Net Insurance Charge	[Insurance Charge - Insurance Savings] $\times E L R \times L C F$
Converted Losses	Reported Losses $\times L C F$
Minimum Retro Prem.	Standard Premium \times Minimum Retro Premium Ratio
Maximum Retro Prem.	Standard Premium \times Maximum Retro Premium Ratio

Factor (generic)
Experience Modification Factor (NCCI)

Retro Premium
Trended Composite Exposure
Adjusted Premium

Composite Rate

Large Deductible Premium

Retro Premium

Basic Premium
Net Insurance Charge
Converted Losses

Minimum Retro Prem.
Maximum Retro Prem.
$M=\frac{Z_{p} A_{p}+\left(1-Z_{p}\right) E_{p}+Z_{e} A_{e}+\left(1-Z_{e}\right) E_{e}}{E}$
$M=\frac{A_{p}+w A_{e}+(1-w) E_{e}+B}{E+B}$
[Basic Premium + Converted Losses] \times Tax Multiplier
Composite Exp. \times Exp. Trend Factor
$\frac{\text { Trended Ultimate Loss\& } A L A E}{\text { Expected Loss\&ALAE Ratio }}$
Adjusted Premium
Trended Composite Exposure
$\frac{\text { Losses Above Deductible + ALAE + Fixed Expense + Credit Risk + Risk Margin }}{1-\text { Variable Expense Provision-Profit Provision }}$
[Basic Premium + Converted Losses] \times Tax Multiplier
[Expense Allowance - Expense $-L C F+$ Net Insurance Charge $] \times$ Standard Premium
[Insurance Charge - Insurance Savings] $\times E L R \times L C F$

Standard Premium \times Minimum Retro Premium Ratio
Standard Premium \times Maximum Retro Premium Ratio

Werner \& Modlin 16: "Claims-Made Ratemaking"

in Basic Ratemaking, 2016, pp. 312-321

DEFINITIONS

Reporting Lag
Settlement Lag
Claims-made
Occurrence
Step Factor

Time between occurrence and notification to insurance company
Time between report data and loss settlement
when the claim is made
when the claim occurs
Factor recognizing the exposure growth for each successive claims-made policy during the transition

CAS Committee on Ratemaking Principles
 Statement of Principles Regarding Property and Casualty Insurance Ratemaking, 1988

DEFINITIONS

Ratemaking
Principle 1
Principle 2
Principle 3
Principle 4

An actuarial process involving several considerations in establishing insurance rates
A rate is an estimate of the expected value of future costs
A rate should provide for all costs associated with the transfer of risk
A rate provides for the costs associated with an individual risk transfer
A rate is reasonable and not excessive, inadequate, or unfairly discriminatory if it is an actuarially sound estimate of the expected value of all future costs associated with an individual risk transfer

ASOP 12: "Risk Classification (for All Practice Areas)"

Revised Edition, December 2005 (updated in 2011)

DEFINITIONS

Advice

Adverse Selection

Credibility
Risk
Financial or Personal Security System

Equitable (Fair) Rates

Profession opinion or recommendation of an actuary
Using know information to the financial disadvantage of a financial or personal security system

Measure of a data body's predictive value
Financial or personal security systems cover these entities
Private or governmental program intended to lessen the potential unfavorable impact of contingent events

Rates where the differences in expected costs are reflected in the rate differentials

ASOP 13: "Trending Procedures in Property/Casualty Insurance Ratemaking"

Revised Edition, June 2009 (updated in 2011)

DEFINITIONS

Coverage	The terms of a contract that creates obligation contingent on certain events
Experience Period	Timeframe of data being used in analysis
Forecast Period	Time period to which data is being projected
Social Influences	Insurance cost impact on societal and noneconomic factors
Trending Period	Time from experience period to the forecast period
Trending Procedure	Process to evaluate the effect on loss costs, expenses, etc. due to changes over time

Friedland 1: "Overview"

in Estimating Unpaid Claims Using Basic Techniques, 2010, pp. 4-16

DEFINITIONS

Claims Reserves

Captive Insurer

Self-Insurance
Underwriting Pools and Associations

Automobile Property Damage Auto liability coverage covering damage to property of a third party from an auto incident

Collision Auto physical damage coverage covering damage to the insured's vehicle from a collision with another vehicle or object

Crime Insurance Protects against loss of money, securities, or inventory resulting from crime
General Liability
Estimate of current unpaid liabilities for claims occurring prior to the financial reporting date

Limited purpose insurer whose main purpose it to insure/reinsure the business of the captive's owners

Financial arrangement where a company pays all (or most) of their own losses
Created to provide coverage for specific exposures

Wide array of insurance covering; premises liability, operations liability, operations liability, products liability, completed operations liability, and professional liability

Personal Automobile Insurance Provides a variety of coverages in regard to the operation of a vehicle
Property Insurance Protects against risk to property from several types of perils
Umbrella and Excess Insurance Liability coverage provided above and beyond limits of primary insurance policies
US Workers Compensation Provides benefits to claims arising from workplace injuries
Insurer
Reserves

The entity bearing the risk for a $\mathrm{P} \& \mathrm{C}$ exposure
Amounts set aside in financial statements for unpaid liabilities

Friedland 2: "Claims Process"	
in Estimating Unpaid Claims Using Basic Techniques, 2010, pp. 17-25	
Tabular Estimate	Predetermined formula used to estimate the reserve based on characteristics of the injured party and insurance coverage (common in WC)
Dates associated with a claim	Policy Effective Date: Date of policy issuance Accident Date: Date of loss Report Date: When the insurer is notified of the claim Transaction Date: Date of payment or case outstanding transaction Closing Date: When the claim is closed Reopening Date: When the claim is reopened

FORMULAS

Incremental Reported Claims Reported at the End of the Period - Reported at the Beginning of the Period
Reported Claims Paid Claims During the Period + Case Outstanding at the End of the Period

- Case Outstanding at the Beginning of the Period

Friedland 3: "Understanding the Types of Data Used in the Estimation of Unpaid Claims"

DEFINITIONS

Wiser's 4-Phase Approach	i. Explore the data to identify key characteristics and any anomalies ii. Apply the appropriate techniques iii. Evaluate the different results of the various methods iv. Monitor the projections
	Predictive value given to a group of data
Credibility	First party: Deductibles comes out before payment
Deductibles	Third-party: Deductibles recovered from insured
Amount the insurer can recover from the sale of damaged property	

FORMULAS

CY WP
CY EP

Friedland 4: "Meeting with Management"

 in Estimating Unpaid Claims Using Basic Techniques, 2010, pp. 44-50
DEFINITIONS

Tort Reform

Legislation modifying liability rules aimed to reduce liability costs by limiting damages

DEFINITIONS

Development Triangle
Development
Maturity

Shows how the values of a cohort changes over time at various evaluation points
The change in value for a cohort over time
The age of the data being evaluated

Friedland 6: "The Development Triangle as a Diagnostic Tool"

 in Estimating Unpaid Claims Using Basic Techniques, 2010, pp. 63-77
DEFINITIONS

Average Rate Level
Annual Exposure Change
Average Reported Value
Average Paid Claim
Average Case Outstanding

Annual change in earned premium \div Rate change in the year

FORMULAS

Successive multiplication of rate changes up to the point in time being analyzed

Friedland 7: "Development Technique"
 in Estimating Unpaid Claims Using Basic Techniques, 2010, pp. 84-130

DEFINITIONS

Development Technique

Age-to-Age Factors
Medial average
Geometric average
i. Assumes future claims development is similar to past experience
ii. Observed claims are an indicator of claims yet to be observed
iii. Consistent claims processing
iv. Stable business mix
v. Stable policy limits
vi. Stable reinsurance retention limits

The change in claims from one evaluation point to the next
Average excluding the highest and lowest value
The $\mathrm{n}^{\text {th }}$ root of the cumulative product of the n age-to-age factors

FORMULAS

Unpaid Claims Estimate
Unpaid Claims Estimate

Projected Unpaid Claims
Unpaid Claim Estimate
IBNR
IBNR
Cumulative \% Reported
Incremental \% Reported

Estimated IBNR + Case Outstanding
Projected Ultimate Claims - Actual Paid Claims
Projected Ultimate Claims - Cumulative Paid Claims
Case Outstanding + IBNR(using AY data)
Projected Ultimate Claims - Reported Claims
Total Unpaid Claims - Case Outstanding
1
$\overline{\text { Reported CDF }}$
Difference of cumulative \% reported at successive ages

Friedland 9: "Bornhuetter-Ferguson Technique"

FORMULAS

Ultimate Claims
Ultimate Claims
\% Reported
\% Paid
Projected Ultimate Claims

Actual Reported Claims + Expected Unreported Claims
$=$ Actual Reported Claims + Expected Claims $\times(\%$ Unreported $)$
Actual Paid Claims + Expected Unpaid Claims
$=$ Actual Paid Claims + Expected Claims $\times(\%$ Unpaid $)$
$=\frac{1}{\text { Reported } \mathrm{CDF}}=1-\%$ Unreported
$=\frac{1}{\text { Paid CDF }}=1-\%$ Unpaid
$=Z \times$ Dev. Technique $+(1-Z) \times$ Expected Claims Technique

Friedland 10: "Cape Cod Technique"	
in Estimating Unpaid Claims Using Basic Techniques, 2010, pp. 174-193	
	DEFINITIONS
Cape Cod Technique	Splits ultimate claims into two parts: Actual reported (or paid) claims, Expected unreported (or unpaid) claims
Used-Up Premium Earned Premium $\times \%$ of Claims Reported Total Unpaid Claim Estimate	
Projected Ultimate Claims - Paid Claims	

FORMULAS

Ultimate Claims	Actual Reported Claims + Expected Unreported Claims
Used-Up Premium	Earned Premium $\times \%$ of Claims Reported
Estimated IBNR	Projected Ultimate Claims - Reported Claims
Total Unpaid Claim Estimate	Projected Ultimate Claims - Paid Claims

Friedland 11: "Frequency-Severity Techniques"

in Estimating Unpaid Claims Using Basic Techniques, 2010, pp. 194-264

DEFINITIONS

Types of F-S Techniques
i. Development technique applied separately to claim counts and average values
ii. Development technique with exposures and inflation incorporated
iii. Disposal rate analysis

FORMULAS

Projected Ultimate Claims
Estimated IBNR
Unpaid Claim Estimate

Estimated Ultimate Claims \times Estimated Ultimate Avg. Value
Projected Ultimate Claims - Reported Claims
Case Outstanding + Estimated IBNR

Friedland 12: "Case Outstanding Development Technique"

 in Estimating Unpaid Claims Using Basic Techniques, 2010, pp. 265-282
FORMULAS

CODF

$$
\frac{(\text { Reported CDF to Ultimate }-1)(\text { Paid CDF to Ultimate })}{\text { Paid CDF to Ultimate }- \text { Reported CDF to Ultimate }}+1
$$

Friedland 13: "Berquist-Sherman Technique"
 in Estimating Unpaid Claims Using Basic Techniques, 2010, pp. 283-328

DEFINITIONS

Disposal Rate
Cumulative closed claim counts as a \% of ultimate claim counts

Friedland 14: "Recoveries: Salvage and Subrogation and Reinsurance"

in Estimating Unpaid Claims Using Basic Techniques, 2010, pp. 329-344

DEFINITIONS

Friedland 16: "Estimating Unpaid Allocated Claim Adjustment Expenses"

in Estimating Unpaid Claims Using Basic Techniques, 2010, pp. 369-385

DEFINITIONS

Unpaid ALAE
Projected Ultimate ALAE - Paid ALAE

Friedland 17: "Estimating Unpaid Unallocated Claim Adjustment Expenses"

in Estimating Unpaid Claims Using Basic Techniques, 2010, pp. 386-417

DEFINITIONS

Dollar-Based Techniques
Classical Technique

Broad IBNR
Pure IBNR (Narrow IBNR)
IBNER
Kittel's Refinement

Assumes ULAE tracks with timing and amount of claim amounts
ULAE:Claim Amount relationship is stable and predictive of the future relationship
Volume and cost of ULAE on open claims and IBNR claims will be proportional to their claim amounts

Assumes that half of ULAE is incurred when claim is opened and one half when the claim is closed

Liability for claims not yet reported and development
Liability for claims incurred not yet reported only (IBNYR)
Liability for development on known claims
ULAE is incurred when a claim is reported even if no payment is made
ULAE for a CY is related to both claims reported and paid

Conger and Nolibos Method

Mango-Allen Refinement

Count-Based Techniques
Early Count Techniques

Wendy Johnson Technique

Mango-Allen Claim
Staffing Technique
Rahardjo
Spalla

Triangle-Based Techniques
Allocation Based on
Claim Payments
Slifka's Adjustment

ULAE:Claim relationship derived from Paid ULAE:Average Paid and Incurred Claims ULAE on not-yet-reported and reported-but-not-yet-closed claims will be proportional to IBNR and case outstanding respectively

ULAE expenses are proportional to the claim dollars handled
ULAE opening costs are proportional to ultimate claims reported cost
ULAE maintenance costs are proportional to payments made
ULAE closing claims are proportional to ultimate claims closed cost
Appropriateness and sensitivity of the assumptions should be reviewed
ULAE:Claim relationship based on Paid ULAE:Expected claims
ULAE on not-yet-reported and reported-but-not-yet-closed claims will be proportional to IBNR and case outstanding respectively

50/50 assumption used in this method as well
Assumes same kind of transactions require the same ULAE regardless of claim size
Breake ULAE into five transaction types: Claim opening, Claim maintenance, Single payments, Claim closings, Claim reopenings

ULAE estimate by transaction is derived by calculating weighted claim counts to total ULAE cost within that time period then applying to future weighted claim counts

Future CY ULAE $=$ Future Claim Staff Count \times ULAE per Staff Member

The longer a claim is open, the more ULAE is required
Using claims data information systems to track time spent on an individual claim by employee

ULAE allocation based on pattern of claim payments

Use time-and-motion study to estimate ULAE allocation between current and prior years

FORMULAS

CY Incurred Claims

Incurred Claims

Kittel's Refinement

CY Paid ULAE

CY Paid Claims + Change in Liabilities
Reported Claims + IBNR
$\frac{1}{2} \times$ Payments on Prior Outstanding Reserves $+1 \times$ Losses Opened and Paid during the year $+\frac{1}{2} \times$ Losses opened remaining open
Losses opened and paid $+\frac{1}{2} \times$ Payments on prior outstanding $+\frac{1}{2} \times$ Losses opened remaining open
$M=\left(U_{1} \times R \times W\right)+\left(U_{2} \times P \times W\right)+\left(U_{3} \times C \times W\right)$

Conger Nolibos

Approach \#1
Approach \#2
Approach \# 3
Claim count basis
Unpaid ULAE

Simplification of
Generalized Approach
$W=\frac{M}{B}$ where $B=U_{1} \times R+U_{2} \times P+U_{3} \times C$
Ultimate ULAE, $U=W^{*} \times L$
Unpaid ULAE $=W^{*} \times L-M$
Unpaid ULAE $=W^{*} \times(L-B)=W^{*} \times\left\{U_{1} \times[L-R(t)]+U_{2} \times[L-P(t)]+U_{3} \times[L-C(t)]\right\}$
Unpaid ULAE $=M \times\left(\frac{L}{B}-1.00\right)$
$b=\left(v_{1} \times r\right)+\left(v_{2} \times o\right)+\left(v_{3} \times c\right)$,
$\sum_{i} w_{i}^{*} \times\left[\left(v_{1} \times r_{i}\right)+\left(v_{2} \times o_{i}\right)+\left(v_{3} \times c_{i}\right)\right]$
Estimated $B=\left(U_{1} \times A\right)+\left(U_{2} \times P\right)$, where $A=$ Ultimate claims for the AY
$W=\frac{M}{(\text { Estimated } B)}$
Unpaid ULAE $=\sum_{i} w_{i}{ }^{*} \times\left[\left(v_{1} \times r_{i}\right)+\left(v_{2} \times o_{i}\right)+\left(v_{3} \times c_{i}\right)\right]$

ASOP 43: "Property/Casualty Unpaid Claims Estimates"

June 2007; Updated for Deviation Language Effective May 1, 2011

DEFINITIONS

Actuarial Central Estimate
Claim Adjustment Expense

Event

Method

Model
Model Risk

Parameter Risk

Principal

Process Risk
Unpaid Claim Estimate
Accounting Date
Valuation Date
Review Date

The expected value over the reasonably possible range outcomes
Costs of administering, determining coverage for, settling, or defending a claim even if claim is proven to be invalid

Incident triggering the potential for claim
Procedure for estimating reserves
Mathematical representation of a specified phenomenon
Risk that the methods aren't appropriate, or the models aren't representative of the risk

Risk that parameters used are not representative of future outcomes.
The actuary's employer
Risk that the projection of future contingencies that are inherently variable
The actuary's estimate of future claims obligations
Delineation date of paid versus unpaid
Date through which transactions are included
Date through which information is included in the process

